MIT OpenCourseWare http://ocw.mit.edu

6.334 Power Electronics Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

# MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.334 Power Electronics Issued: March 2, 2007 Problem Set 4 Due: March 9, 2007

Reading: KSV Chapter 7

#### **Problem 4.1** KSV Problem 20.10

#### Problem 4.2

Figure 1 shows a tapped-inductor boost converter. This approach is sometimes used to achieve larger conversion ratios as compared to a conventional boost design. The inductor winding contains a total of  $(N_1+N_2)$  turns. The switch is placed  $N_1$  turns from the left side of the inductor, as shown. The tapped inductor can be viewed as a two-winding  $(N_1:N_2)$  transformer, in which the two windings are connected in series. The inductance of the entire  $(N_1+N_2)$  turn winding is L.

- Sketch an equivalent circuit model for the tapped inductor that includes a magnetizing inductance and an ideal transformer. Label the values of the magnetizing inductance and turns ratio.
- b. Determine an analytical expression for the conversion ratio  $V_2/V_1$  assuming that all components are lossless, and that the converter operates in continuous conduction mode.
- c. Plot the conversion ratio as a function of duty ratio D for the case  $N_1=N_2$ , and compare to the conventional non-tapped case  $(N_2=0)$ .

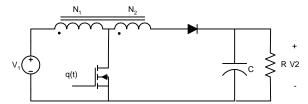



Figure 1 A tapped-inductor boost converter.

### **Problem 4.3** KSV Problem 20.7

*Notes:* 1. You may optionally elect to use aluminum conductor in your design. Silver is disallowed for cost reasons.

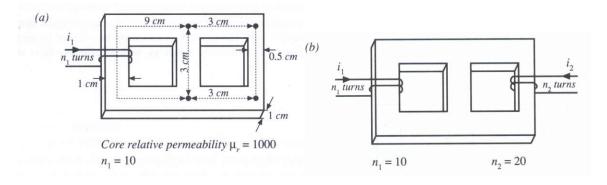
- 2. There will be a small prize for the "best" design, as judged by the 6.334 staff. Judging will be based on the following three factors:
  - a. Lowest total weight of the transformer
  - b. The degree to which the proposed design meets the specifications and is expected to match the performance of a real implementation.
  - c. The degree to which the proposed design and its expected performance are well analyzed and documented.

### Problem 4.4

Consider the magnetic circuit of Fig. 2(a). All legs are 1 cm wide, except for the right leg, which is 0.5 cm wide. You may neglect any nonuniformities in flux distribution at the corners.

- a. Find a magnetic circuit model for the device, and find the inductance of the winding. A second winding is added, as shown in Fig. 2(b).
  - b. Modify the circuit model of part (a) to include this second winding.
  - c. Derive the matrix description for this magnetic circuit, and find the numerical values of  $L_{11}$ ,  $L_{12}$ , and  $L_{22}$ . The matrix representation has the form:

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\ L_{12} & L_{22} \end{bmatrix} \frac{d}{dt} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$


### Problem 4.5

Design an inductor for a 150 W, 140 kHz boost converter operating in continuous conduction mode from a nominal input voltage of 14 V into an output voltage of 42 V. The desired inductance is 6  $\mu$ H, and it is specified that the inductor be implemented with 3F3 Ferrite material in an RM form factor core. Data for RM10 and RM12 sized cores are included below. Various values of  $A_L$  (nH for one turn) are available in each core (recall that inductance is proportional to the number of turns squared.) For 3F3 core material you may assume a maximum allowable flux density of 3000 gauss (0.3 T). You should also assume a maximum allowable current density in the windings of 500 A/cm². (Of course, the specified windings must fit within the winding area of the core.)

- a. Calculate the ripple ratio and peak inductor current for operation at full load (150 W).
- b. Design an inductor that meets the required specification. For simplicity, you may neglect inductor core and winding losses and inductor temperature rise. You should provide key information regarding your design (e.g., core, A<sub>L</sub> value, number of turns, wire gauge) along with calculations necessary for evaluating your design (e.g., peak core flux density, current density, etc.).
- c. (*Optional not graded*) Ambitious students may make an approximate calculation of inductor loss. To do so, compute the (approximate) losses in the inductor as the sum of winding and core losses. Winding power loss may be (crudely) approximated as the dc winding resistance times the rms inductor current squared. (In more sophisticated calculations, skin effect may be considered in the windings.) Core power loss in a 3F3 material core can be computed by approximating the ac flux in the core as sinusoidal, and calculating the core loss as:

$$P_{core} = 9.16 \times 10^{-13} \cdot \left(10^{-3} \cdot f_{sw}\right)^{1.231} \cdot \left(0.5 \cdot B_{pk}\right)^{2.793} \cdot V_{core}$$

where  $P_{core}$  is the core loss in Watts,  $f_{sw}$  is the switching frequency in kHz,  $B_{pk}$  is the peak ac flux swing in gauss, and  $V_{core}$  is the volume of the core in cm<sup>3</sup>.



**Figure 2** (a) A single-winding magnetic circuit. (b) A coupled-winding magnetic circuit. Ferroxcube


# RM cores and accessories

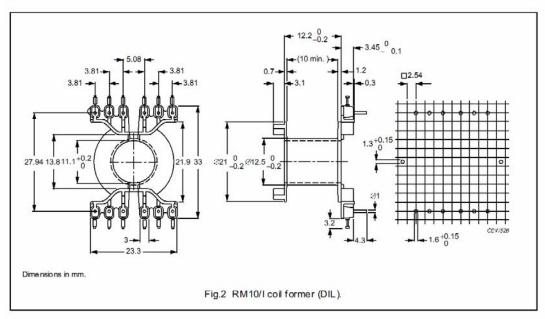
RM10/I

## CORESETS

## Effective core parameters

| SYMBOL           | PARAMETER        | VALUE       | UNIT            |
|------------------|------------------|-------------|-----------------|
| Σ(I/A)           | core factor (C1) | 0.462       | mm-1            |
| V <sub>e</sub>   | effective volume | 4310        | mm <sup>3</sup> |
| le               | effective length | 44.6        | mm              |
| Ae               | effective area   | 96.6        | mm <sup>2</sup> |
| A <sub>min</sub> | minimum area     | 89.1        | mm <sup>2</sup> |
| m                | mass of set      | <b>≈ 22</b> | g               |




Core sets for filter applications

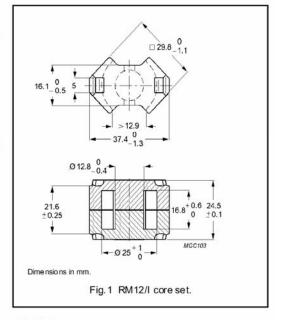
| GRADE    | AL<br>(nH) | μ <sub>e</sub> | AIR GAP<br>(μm) | TYPE NUMBER      |
|----------|------------|----------------|-----------------|------------------|
| 3C90     | 160 ±3%    | ≈ 59           | ≈ 980           | RM10/I-3C90-A160 |
|          | 250 ±3%    | ≈ 92           | ≈ 57 <b>0</b>   | RM10/I-3C90-A250 |
|          | 315 ±3%    | ≈ 116          | ≈ <b>43</b> 0   | RM10/I-3C90-A315 |
| Г        | 400 ±3%    | ≈ 147          | ≈ 330           | RM10/I-3C90-A400 |
| Г        | 630 ±3%    | ≈ 232          | ≈ 190           | RM10/I-3C90-A630 |
|          | 4500±25%   | ≈ 1650         | r≠ <b>0</b>     | RM10/I-3C90      |
| 3C91 des | 5500±25%   | ≈ 2020         | ~ 0             | RM10/I-3C91      |
| 3C94     | 160 ±3%    | ≈ 59           | ≈980            | RM10/I-3C94-A160 |
|          | 250 ±3%    | ≈ 92           | ≈ 570           | RM10/I-3C94-A250 |
|          | 315 ±3%    | ~ 116          | ~430            | RM10/I-3C94-A315 |
|          | 400 ±3%    | ≈ 147          | ≈330            | RM10/I-3C94-A400 |
|          | 630 ±3%    | ≈ 232          | ≈ 190           | RM10/I-3C94-A630 |
|          | 4500±25%   | ≈ 1650         | ≈ O             | RM10/I-3C94      |
| 3C96 des | 4050 ±25%  | ≈ 1680         | ≃ 0             | RM10/I-3C96      |
| 3F3      | 160 ±3%    | ≈ 59           | ≈980            | RM10/I-3F3-A160  |
|          | 250 ±3%    | ≈ 92           | ≈ <b>570</b>    | RM10/I-3F3-A250  |
|          | 315 ±3%    | ≈ 1 16         | ≈430            | RM10/I-3F3-A315  |
|          | 400 ±3%    | ≈ 147          | ≈ 330           | RM10/I-3F3-A400  |
| F        | 630 ±3%    | ≈ 232          | ≈ 190           | RM10/I-3F3-A630  |
|          | 4050 ±25%  | ≈ 1490         | ≈ 0             | RM10/I-3F3       |
| 3F35 🔞   | 3100±25%   | ≈1190          | ≈ 0             | RM10/I-3F35      |

## COIL FORMER

### General data

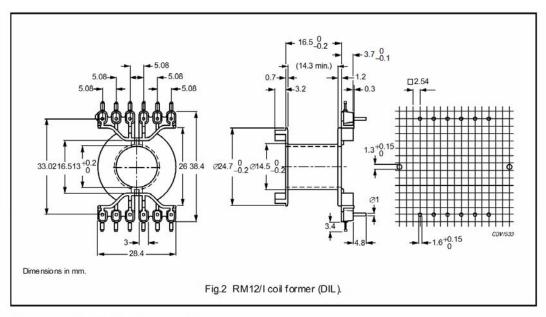
| PARAMETER                                                 | SPECIFICATION                                                                                                           |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Coil former material                                      | polybutyleneterephtalate (PBT), glass-reinforced, flame retardant in accordance with UL 94V-0; UL file number E45329(R) |  |  |
| Pin material                                              | copper-tin alloy (CuSn), tin-lead alloy (SnPb) plated, transition to lead-free (Sn) ongoing                             |  |  |
| Maximum operating temperature                             | 155 °C, "IEC 60085", class F                                                                                            |  |  |
| Resistance to soldering heat                              | "IEC 60068-2-20", Part 2, Test Tb, method 1B, 350 °C, 3.5 s                                                             |  |  |
| Solderability "IEC 60068-2-20", Part 2, Test Ta, method 1 |                                                                                                                         |  |  |




# Winding data for RM10 coil former (DIL)

| NUMBER OF<br>SECTIONS | AVERAGE<br>LENGTH OF<br>TURN<br>(mm) | WINDING<br>AREA<br>(mm²) | WINDING<br>WIDTH<br>(mm) | TYPE NUMBER      |
|-----------------------|--------------------------------------|--------------------------|--------------------------|------------------|
| 1                     | 52                                   | 44.2                     | 10.0                     | CPV-RM10-1S-12PD |

CORESETS


## Effective core parameters

| SYMBOL         | PARAMETER        | VALUE | UNIT            |  |
|----------------|------------------|-------|-----------------|--|
| Σ(I/A)         | core factor (C1) | 0.388 | mm-1            |  |
| V <sub>e</sub> | effective volume | 8340  | mm <sup>3</sup> |  |
| le             | effective length | 56.6  | mm              |  |
| Ae             | effective area   | 146   | mm <sup>2</sup> |  |
| Amin           | minimum area     | 125   | mm <sup>2</sup> |  |
| m              | mass of set      | ≈46   | g               |  |



## Core sets for general purpose transformers and power applications

| GRADE | A <sub>L</sub><br>(nH) | $\mu_{\mathbf{e}}$ | AIR GAP<br>(μm) | TYPE NUMBER     |
|-------|------------------------|--------------------|-----------------|-----------------|
| 3F3   | 160 ±3%                | ≈ <b>4</b> 9       | ≈ <b>1570</b>   | RM12/I-3F3-A160 |
|       | 250 ±3%                | ≈77                | ≈ 900           | RM12/I-3F3-A250 |
|       | 315 ±5%                | ≈97                | ≈ 680           | RM12/I-3F3-A315 |
|       | 400 ±5%                | ≈ 123              | ≈ <b>5</b> 10   | RM12/I-3F3-A400 |
|       | 630 ±5%                | ≈ 194              | ≈ 300           | RM12/I-3F3-A630 |
|       | 5050 ±25%              | ≈ 1560             | ≈ <b>0</b>      | RM12/I-3F3      |



# Winding data for RM12/I coil former (DIL)

| NUMBER OF<br>SECTIONS | AVERAGE<br>LENGTH OF<br>TURN<br>(mm) | WINDING<br>AREA<br>(mm²) | WINDING<br>WIDTH<br>(mm) | TYPE NUMBER        |
|-----------------------|--------------------------------------|--------------------------|--------------------------|--------------------|
| 1                     | 61                                   | 75.0                     | 14.3                     | CPV-RM12/I-1S-12PD |