Introduction to Simulation - Lecture 12

Methods for Ordinary Differential Equations

Jacob White

Thanks to Deepak Ramaswamy, Jaime Peraire, Michal Rewienski, and Karen Veroy

Outline

Initial Value problem examples Signal propagation (circuits with capacitors). Space frame dynamics (struts and masses). Chemical reaction dynamics. Investigate the simple finite-difference methods Forward-Euler, Backward-Euler, Trap Rule. Look at the approximations and algorithms Examine properties experimentally. Analyze Convergence for Forward-Euler

Application Problems

Signal Transmission in an Integrated Circuit

Ground Plane

• Metal Wires carry signals from gate to gate.

• How long is the signal delayed?

Application Problems

Signal Transmission in an Integrated Circuit

Circuit Model

Constructing the Model

- Cut the wire into sections.
- Model wire resistance with resistors.
- Model wire-plane capacitance with capacitors.

• What is the oscillation amplitude?

Oscillations in a Space Application Problems Frame **Simplified Structure** Bolts **Struts** L'oad Ground

Example Simplified for Illustration

Application Problems

Oscillations in a Space Frame

Modeling with Struts, Joints and Point Masses

Constructing the Model

- Replace Metal Beams with Struts.
- Replace cargo with point mass.

Application Problems

Signal Transmission in an **Integrated Circuit**

A 2x2 Example

Constitutive

Conservation

Nodal Equations Yields 2x2 System $\begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix} \begin{bmatrix} \frac{dv_1}{dt} \\ \frac{dv_2}{dt} \end{bmatrix} = -\begin{bmatrix} \frac{1}{R_1} + \frac{1}{R_2} & -\frac{1}{R_2} \\ -\frac{1}{R_2} & \frac{1}{R_2} + \frac{1}{R_2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

Application Problems

Signal Transmission in an Integrated Circuit

A 2x2 Example

Let $C_1 = C_2 = 1$, $R_1 = R_3 = 10$, $R_2 = 1$ $\begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix} \begin{bmatrix} \frac{dv_1}{dt} \\ \frac{dv_2}{dt} \end{bmatrix} = -\begin{bmatrix} \frac{1}{R_1} + \frac{1}{R_2} & -\frac{1}{R_2} \\ -\frac{1}{R_2} & \frac{1}{R_3} + \frac{1}{R_2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \longrightarrow \frac{dx}{dt} = \begin{bmatrix} -1.1 & 1.0 \\ 1.0 & -1.1 \end{bmatrix} x$

Eigenvalues and Eigenvectors

SMA-HPC ©20

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -0.1 & 0 \\ 0 & -2.1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \\ igenvectors \end{bmatrix}$$

Eigenvalues

An Aside on Eigenanalysis

Consider an ODE:
$$\frac{dx(t)}{dt} = Ax(t), \quad x(0) = x_0$$

Eigendecomposition:
$$A = \begin{bmatrix} \vdots & \vdots & \vdots \\ E_1 & E_2 & E_n \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots \\ E_1 & E_2 & E_n \\ \vdots & \vdots & \vdots \end{bmatrix}^{-1}$$

Change of variables: $Ey(t) = x(t) \Leftrightarrow y(t) = E^{-1}x(t)$ Substituting: $\frac{dEy(t)}{dt} = AEy(t), \quad Ey(0) = x_0$ Multiply by E^{-1} : $\frac{dy(t)}{dt} = E^{-1}AEy(t) = \begin{bmatrix} \lambda_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \lambda_n \end{bmatrix} y(t)$

An Aside on Eigenanalysis Continued

From last slide:
$$\frac{dy(t)}{dt} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix} y(t)$$
 Decoupled Equations!
Decoupling:
$$\frac{dy_i(t)}{dt} = \lambda_i y_i(t) \implies y_i(t) = e^{\lambda_i t} y(0)$$
Steps for solving
$$\frac{dx(t)}{dt} = Ax(t), \quad x(0) = x_0$$
1) Determine E, λ
2) Compute $y(0) = E^{-1}x_0 \begin{bmatrix} e^{\lambda_1 t} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\lambda_n t} \end{bmatrix} y(0)$
3) Compute $y(t) = \begin{bmatrix} 4 x(t) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\lambda_n t} \end{bmatrix} y(0)$

$$4) x(t) = Ey(t)$$

Application Problems

Signal Transmission in an Integrated Circuit

A 2x2 Example

Notice two time scale behavior

• v_1 and v_2 come together quickly (fast eigenmode).

• v_1 and v_2 decay to zero slowly (slow eigenmode). SMA-HPC ©2003 MIT

Eigenvalues and Eigenvectors

SMA-HPC ©20

$$A = \begin{bmatrix} i & -1 \\ i & -i \end{bmatrix} \begin{bmatrix} i & 0 \\ -i \end{bmatrix} \begin{bmatrix} -1 & -1 \\ i & -i \end{bmatrix} \begin{bmatrix} i & 0 \\ -i \end{bmatrix} \begin{bmatrix} -1 & -1 \\ i & -i \end{bmatrix} \begin{bmatrix} -1 & -1 \\ -i \end{bmatrix} \begin{bmatrix} -1 & -1$$

Note the system has imaginary eigenvalues

- Persistent Oscillation
- Velocity, v, peaks when displacement, u, is zero.

Application Problems

Chemical Reaction Example

A 2x2 Example

Amount of reactant = R, the temperature = T

 $\frac{dT}{dt} = -T + R$

More reactant causes temperature to rise, higher temperatures increases heat dissipation causing temperature to fall

 $\frac{dR}{dt} = -R + 4T$

Higher temperatures raises reaction rates, increased reactant interferes with reaction and slows rate.

Application Problems

Chemical Reaction Example

A 2x2 Example

Eigenvalues and Eigenvectors

SMA-HPC ©2003

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 0 \\ 2 & -3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}^{-1} \\ 2 & 2 \end{bmatrix}^{-1}$$

eigenvectors
Eigenvalues

Note the system has a positive eigenvalue • Solutions grow exponentially with time.

Basic Concepts

First - Discretize Time

Second - Represent x(t) using values at t_i

Third - Approximate $\frac{d}{dt}x(t)$ sing the discrete Example: $\frac{d}{dt}x(t_l) \approx \frac{\hat{x}^l - \hat{x}^{l-1}}{\Delta t_l}$ or $\frac{\hat{x}^{l+1} - \hat{x}^l}{\Delta t_{l+1}}$ \hat{x}^{l} 's

©2003 MI

Basic Concepts

Forward Euler Approximation

$$\frac{d}{dt}x(t_l) = Ax(t_l) \cong \frac{x(t_{l+1}) - x(t_l)}{\Delta t}$$

or
$$x(t_{l+1}) \cong x(t_l) + \Delta t Ax(t_l)$$

 $\Delta = x(t_{l+1}) - \left(x(t_l) + \Delta t A x(t_l)\right)$

 $x(t_1) \approx \hat{x}^1 = x(0) + \Delta t A x(0)$ $x(t_2) \approx \hat{x}^2 = \hat{x}^1 + \Delta t A \hat{x}^1$ \vdots $x(t_L) \approx \hat{x}^L = \hat{x}^{L-1} + \Delta t A \hat{x}^{L-1}$

Basic Concepts

Forward Euler Algorithm

Basic Concepts

Backward Euler Approximation

 $\Delta = x(t_{l+1}) - (x(t_{l}) + \Delta t \, A \, x(t_{l+1}))$

Basic Concepts

Backward Euler Algorithm

 t_{γ}

 $\boldsymbol{\chi}$

Solve with Gaussian Elimination $x(t_{1}) \approx \hat{x}^{1} = x(0) + \Delta t A \hat{x}^{1}$ $\Rightarrow \Rightarrow [I - \Delta t A] \hat{x}^{1} = x(0) \qquad \Delta t A \hat{x}^{2}$ $x(t_{2}) \approx \hat{x}^{2} = [I - \Delta t A]^{-1} \hat{x}^{1} \qquad \Delta t A \hat{x}^{1}$ \vdots $x(t_{1}) \approx \hat{x}^{L} = [I - \Delta t A]^{-1} \hat{x}^{L-1}$

$$\frac{1}{2} \left(\frac{d}{dt} x(t_{l+1}) + \frac{d}{dt} x(t_{l}) \right)$$

= $\frac{1}{2} \left(Ax(t_{l+1}) + Ax(t_{l}) \right)$
 $\approx \frac{x(t_{l+1}) - x(t_{l})}{\Delta t}$
 $x(t_{l+1}) \approx x(t_{l}) + \frac{1}{2} \Delta t A(x(t_{l+1}) + x(t_{l}))$

Basic Concepts

Trapezoidal Rule

$$\Delta = (x(t_{l+1}) - \frac{1}{2}\Delta t A x(t_l)) - (x(t_l) + \frac{1}{2}\Delta t A x(t_{l+1}))$$

Basic Concepts

Trapezoidal Rule Algorithm

Basic Concepts

Numerical Integration View

$$\frac{d}{dt}x(t) = Ax(t) \Rightarrow x(t_{l+1}) = x(t_l) + \int_{t_l}^{t_{l+1}} Ax(\tau)d\tau$$

$$\int_{t_l}^{t_{l+1}} Ax(\tau)d\tau \approx \frac{\Delta t}{2} \left(Ax(t_l) + Ax(t_l)\right) \text{ Trap}$$

$$\Delta tAx(t_{l+1}) \text{ BE}$$

$$\Delta tAx(t_l) \text{ FE}$$

$$\int_{t_l}^{t_l} \frac{\Delta tAx(t_l)}{t_l} \text{ FE}$$
SMA-HPC ©2003 MIT

Basic Concepts

Summary

Trap Rule, Forward-Euler, Backward-Euler Are all <u>one-step</u> methods \hat{x}^{l} is computed using only \hat{x}^{l-1} , not \hat{x}^{l-2} , \hat{x}^{l-3} , etc. Forward-Euler is simplest No equation solution \longrightarrow explicit method. Boxcar approximation to integral Backward-Euler is more expensive Equation solution each step > implicit method Trapezoidal Rule might be more accurate Equation solution each step implicit method Trapezoidal approximation to integral SMA-HPC ©2003 MIT

FE and BE results have larger errors than Trap Rule, and the errors grow with time.

Numerical Experiments

Unstable Reaction-Error Plots

All methods have errors which grow exponentially SMA-HPC ©2003 MIT

Numerical Experiments

Unstable Reaction-Convergence

For FE and BE, *Error* $\propto \Delta t$ For Trap, *Error* $\propto (\Delta t)^2$ SMA-HPC ©2003 MIT

Numerical Experiments

Oscillating Strut and Mass

Why does FE result grow, BE result decay and the Trap rule preserve oscillations

Numerical Experiments

Two timescale RC Circuit

With Backward-Euler it is easy to use small timesteps for the fast dynamics and then switch to large timesteps for the slow decay

Numerical Experiments

Two timescale RC Circuit

The Forward-Euler is accurate for small timesteps, but goes unstable when the timestep is enlarged

Numerical Experiments

Summary

Convergence

- Did the computed solution approach the exact solution?
- Why did the trap rule approach faster than BE or FE?
- Energy Preservation
 - Why did BE produce a decaying oscillation?
 - Why did FE produce a growing oscillation?
 - Why did trap rule maintain oscillation amplitude?
- Two timeconstant (stiff) problems

Why did FE go unstable when the timestep increased?
 We will focus on convergence today

Convergence Analysis

Convergence Definition

Definition: A finite-difference method for solving initial value problems on [0,T] is said to be convergent if given any A and any initial condition $\max_{l \in [0, \frac{T}{\Delta t}]} \left\| \hat{x}^{l} - x(l\Delta t) \right\| \to 0 \text{ as } \Delta t \to 0$ computed with Δt \hat{x}^{l} computed with $\frac{\Delta t}{2}$

Convergence Analysis

Order-p convergence

Definition: A finite-difference method for solving initial value problems on [0,T] is said to be order p convergent if given any A and any initial condition

$$\max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| \hat{x}^{l} - x \left(l \Delta t \right) \right\| \leq C \left(\Delta t \right)^{p}$$

for all Δt less than a given Δt_0

Forward- and Backward-Euler are order 1 convergent Trapezoidal Rule is order 2 convergent

Convergence Analysis

Two Conditions for Convergence

 Local Condition: One step errors are small (consistency)
 Typically verified using Taylor Series
 Global Condition: The single step errors do not grow too quickly (stability)

All one-step methods are stable in this sense.

Convergence Analysis

Consistency Definition

Definition: A one-step method for solving initial value problems on an interval [0,T] is said to be consistent if for any A and any initial condition

$$\frac{\left\|\hat{x}^{1} - x\left(\Delta t\right)\right\|}{\Delta t} \to 0 \text{ as } \Delta t \to 0$$

Convergence Analysis

Consistency for Forward Euler

Forward-Euler definition $\hat{x}^{1} = x(0) + \Delta t A x(0)$ $\tau \in \left[0, \Delta t \right]$ Expanding in t about zero yields $x(\Delta t) = x(0) + \Delta t \frac{dx(0)}{dt} + \frac{(\Delta t)^2}{2} \frac{d^2 x(\tau)}{dt^2}$ Noting that $\frac{d}{dt}x(0) = Ax(0)$ and subtracting $\left\|\hat{x}^{1} - x(\Delta t)\right\| \leq \frac{(\Delta t)^{2}}{2} \left\|\frac{d^{2}x(\tau)}{dt^{2}}\right\| \xrightarrow{\text{Proves the theorem if}}_{\text{derivatives of x are}}$ A-HPC ©2003 MI1

Convergence Analysis

Convergence Analysis for Forward Euler

Forward-Euler definition $\hat{x}^{l+1} = \hat{x}^l + \Delta t A \hat{x}^l$ Expanding in t about $l\Delta t$ yields $x((l+1)\Delta t) = x(l\Delta t) + \Delta tAx(l\Delta t) + e^{l}$ where e^{l} is the "one-step" error bounded by $e^{l} \leq C(\Delta t)^{2}$, where $C = 0.5 \max_{\tau \in [0,T]} \left| \frac{d^{2}x(\tau)}{dt^{2}} \right|$

Convergence Analysis

Convergence Analysis for Forward Euler Continued

Subtracting the previous slide equations $\hat{x}^{l+1} - x((l+1)\Delta t) = (I + \Delta tA)(\hat{x}^l - x(l\Delta t)) + e^l$ Define the "Global" error $E^{l} \equiv x^{l} - \hat{x}(l\Delta t)$ $E^{l+1} = (I + \Delta tA)E^{l} + e^{l}$ Taking norms and using the bound on e^{l} $\left\|E^{l+1}\right\| \leq \left\|\left(I + \Delta tA\right)\right\| \left\|E^{l}\right\| + C\left(\Delta t\right)^{2}$ $\leq \left(1 + \Delta t \left\|A\right\|\right) \left\|E^{l}\right\| + C \left(\Delta t\right)^{2}$

Convergence Analysis

A helpful bound on difference equations

A lemma bounding difference equation solutions If $|u^{l+1}| \le (1+\varepsilon)|u^l| + b, u^0 = 0, \varepsilon > 0$ Then $|u^l| \leq \frac{e^{\varepsilon l}}{\varepsilon} |b|$ To prove, first write u' as a power series and sum

$$|u^{l}| \leq \sum_{j=0}^{l-1} (1+\varepsilon)^{j} |b| = \frac{1-(1+\varepsilon)^{j}}{1-(1+\varepsilon)} |b|$$

Convergence Analysis

A helpful bound on difference equations cont.

To finish, note
$$(1+\varepsilon) \le e^{\varepsilon} \Longrightarrow (1+\varepsilon)^{l} \le e^{\varepsilon l}$$

 $|u^{l}| \le \frac{1-(1+\varepsilon)^{j}}{1-(1+\varepsilon)} |b| = \frac{(1+\varepsilon)^{j}-1}{\varepsilon} |b| \le \frac{e^{\varepsilon l}}{\varepsilon} |b|$

Mapping the global error equation to the lemma

$$\left\|E^{l+1}\right\| \leq \left(1 + \Delta t \left\|A\right\| \atop \varepsilon\right) \left\|E^{l}\right\| + C\left(\Delta t\right)^{2}$$

Convergence Analysis

Back to Forward Euler Convergence analysis.

Applying the lemma and cancelling terms

$$\left\|E^{l}\right\| \leq \left(1 + \Delta t \left\|A\right\|\right) \left\|E^{l-1}\right\| + C\left(\Delta t\right)^{2} \leq \frac{e^{l\Delta t \left\|A\right\|}}{\Delta t \left\|A\right\|} C\left(\Delta t\right)^{2}$$

Finally noting that $l\Delta t \leq T$,

$$\max_{l \in [0,L]} \left\| E^l \right\| \le e^{\|A\|T} \frac{C}{\|A\|} \Delta t$$

Convergence Analysis

Observations about the forward-Euler analysis.

$$\max_{l \in [0,L]} \left\| E^{l} \right\| \le e^{\|A\|^{T}} \frac{C}{\|A\|} \Delta t$$

- forward-Euler is order 1 convergent
- The bound grows exponentially with time interval
- C is related to the solution second derivative
- The bound grows exponentially fast with norm(A).

Convergence Analysis

Exact and forward-Euler(FE) Plots for Unstable Reaction.

Forward-Euler Errors appear to grow with time

Convergence Analysis

forward-Euler errors for solving reaction equation.

Note error grows exponentially with time, as bound predicts

Convergence Analysis

Exact and forward-Euler(FE) Plots for Circuit.

Forward-Euler Errors don't always grow with time

Convergence Analysis

forward-Euler errors for solving circuit equation.

Error does not always grow exponentially with time! <u>Bound is conservative</u>

Summary

Initial Value problem examples Signal propagation (two time scales). Space frame dynamics (oscillator). Chemical reaction dynamics (unstable system). Looked at the simple finite-difference methods Forward-Euler, Backward-Euler, Trap Rule. Look at the approximations and algorithms Experiments generated many questions Analyzed Convergence for Forward-Euler Many more questions to answer, some next time