Introduction to Simulation - Lecture 23

Fast Methods for Integral Equations

Jacob White

Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Outline

Solving Discretized Integral Equations **Using Krylov Subspace Methods Fast Matrix-Vector Products** Multipole Algorithms Multipole Representation. **Basic Hierarchy Algorithmic Improvements** Local Expansions **Adaptive Algorithms Computational Results**

Exterior Problem in Electrostatics

First Kind Integral Equation For Charge:

Drag Force in a Microresonator

Basis Function Approach

Piecewise Constant Basis

Integral Equation:
$$\Psi(x) = \int_{surface} \frac{1}{\|x - x'\|} \sigma(x') dS'$$

Basis Function Approach

Centroid Collocation

Basis Function Approach

Calculating Matrix Elements

One point quadrature Approximation

Four point quadrature Approximation SMA-HPC ©2003 MIT

Basis Function Approach

Calculating "Self-Term"

Basis Function Approach

Calculating "Self-Term" Tricks of the trade

Basis Function Approach

Calculating "Self-Term" Other Tricks of the trade

If panel is a flat polygon, analytical formulas exist
 Curve panels can be handled with projection

Basis Function Approach

Galerkin (test=basis)

$$\int \varphi_{i}(x) \Psi(x) dS = \sum_{j=1}^{n} \alpha_{j} \iint \varphi_{i}(x) G(x, x') \varphi_{j}(x') dS' dS$$

$$For \text{ piecewise constant Basis}$$

$$\int \Psi(x) dS' = \sum_{j=1}^{n} \alpha_{j} \int_{panel i} \int_{panel j} \frac{1}{\|x - x'\|} dS' dS$$

$$\int_{b_{i}} \frac{A_{i,i}}{\sum_{j=1}^{n} \cdots \cdots A_{i,n}} \left[\begin{bmatrix} \alpha_{i} \\ \vdots \\ \vdots \\ A_{n,i} \end{bmatrix} = \begin{bmatrix} b_{i} \\ \vdots \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} b_{i} \\ \vdots \\ \vdots \\ b_{n} \end{bmatrix}$$

Basis Function Approach

Problem with dense matrix

Integral Equation Method Generate Huge Dense Matrices

Gaussian Elimination Much Too Slow!

Solving Discretized Integral Equations

The Generalized Conjugate Residual Algorithm

The kth step of GCR

compute Ap_k $\alpha_k = \frac{(r^k)^T (Ap_k)}{(Ap_k)^T (Ap_k)}$

 $x^{k+1} = x^k + \alpha_k p_k$

 $r^{k+1} = r^k - \alpha_k A p_k$

 $p_{k+1} = r^{k+1} - \sum_{j=0}^{k} \frac{\left(Ar^{k+1}\right)^{T} \left(Ap_{j}\right)}{\left(Ap_{j}\right)^{T} \left(Ap_{j}\right)} p_{j}$

For discretized Integral equations, A is dense

Determine optimal stepsize in kth search direction

Update the solution and the residual

Compute the new orthogonalized search direction

Solving Discretized Integral Equations

The Generalized Conjugate Residual Algorithm

Complexity of GCR

Dense Matrix-vector compute Ap_{k} product costs O(n²) $\alpha_{k} = \frac{\left(r^{k}\right)^{T} \left(Ap_{k}\right)}{\left(Ap_{k}\right)^{T} \left(Ap_{k}\right)}$ Vector inner products, O(n) $x^{k+1} = x^k + \alpha_k p_k$ Vector Adds, O(n) $r^{k+1} = r^k - \alpha_k A p_k$ $p_{k+1} = r^{k+1} - \sum_{j=0}^{k} \frac{\left(Ar^{k+1}\right)^{T} \left(Ap_{j}\right)}{\left(Ap_{j}\right)^{T} \left(Ap_{j}\right)} p_{j} \qquad \begin{array}{c} O(k) \text{ inner products,} \\ \text{total cost O(nk)} \end{array}$ Algorithm is $O(n^2)$ for Integral Equations even though # iters (k) is small! SMA-HPC ©2003 MIT

Solving Discretized Integral Equations

The Generalized Conjugate Residual Algorithm

Fast Matrix Vector Products

exactly compute Ap_k Dense Matrix-vector product costs O(n²) approximately compute Ap_k Reduces Matrix-vector product costs to O(n) or O(nlogn)

Computational Costs

Fast Solvers

Gaussian Elimination: O(n³) time, O(n²) memory
GCR with direct M-V: O(n²) time, O(n²) memory
Fast Methods: O(n) time, O(n) memory

Multipole Representation

Direct Potential Evaluation

• Potential at point *i*: $v_i(r_i, \phi_i, \theta_i) = \sum_{j=1}^d q_j P_{ij}$. • Complete evaluation at *d* points costs *d*² operations.

Multipole Representation

Multipole Potential Evaluation

N2

• Approximate potential at point *i*: $v_i(r_i, \phi_i, \theta_i) \approx \sum_{j=0}^{order} \sum_{k=-j}^{j} \frac{M_j^k}{r_i^{j+1}} Y_j^k(\phi_i, \theta_i).$

Multipole Representation

...Multipole Potential Evaluation

• Multipole coefficients function of panel charges: $M_j^k \stackrel{\Delta}{=} \sum_{i=1}^d \frac{q_i}{A_i} \int_{\text{panel } i} \rho^j Y_j^{-k}(\alpha, \beta) dA.$

Computing Multipole expansions costs order *d* operations.

 Each approximate potential evaluation costs order 1 operations.

d potential evaluation due to d panels in order d operations

Multipole Representation

Scale Invariance of Error

Multipole Representation

Multipole Algorithm Hierarchy

Hierarchy guarantees: Bounded error: $\mathsf{Error} \leq K\left(rac{R}{r}
ight)^{order+1}$ $\leq K\left(rac{1}{2}
ight)^{order+1}$ order = 2 yields one percent accuracy.

Local Expansions

Cost Reduction

Construct a local expansion to represent distant charge potentials.
Evaluate a single local expansion, rather than many multipole expansions, at each evaluation

point.

Local Expansions

Clustered Evaluations

N3

 Local expansion summarizes the influence of distant charge for clusters of evaluation points.

Local Expansions

...Clustered Evaluations

 Gives O(n) potential evaluation when combined with coalescing of charge done by multipole expansions.

• Approximate potential at point *i*: $v_i(r_i, \phi_i, \theta_i) \approx \sum_{j=0}^{order} \sum_{k=-j}^{j} L_j^k Y_j^k(\phi_i, \theta_i) r_i^j$.

Local Expansions

Summary of Operations

N4

Local Expansions

...Summary of Operations

 Multipole and local expansions are built using complementary hierarchies.

- Complete calculation consists of:
 - 1. Build multipoles (Upward Pass).
 - 2. Build locals (Downward Pass).
 - 3. Evaluate local expansions and nearby charge potential (Evaluation Pass).

Local Expansions

Hierarchy Construction

First build the multipole expansions moving upward from child to parent.
Then build the local expansions by moving downward from parent to

child.

• Computation has a tree structure.

Local Expansions

Construction Details

• Conversion of multipole expansions to local expansions.

 A child's local expansion is its parents local expansion plus conversions of multipole expansions in child's interaction range.

Adaptive Algorithm

Multipole Inefficiency

N5

Direct Evaluation

 $v_4(x,y,z) = q_1P_{41} + q_2P_{42} + q_3P_{43}$

Adaptive Algorithm

...Multipole Inefficiency

Multipole Evaluation

Using Multipole MORE expensive than Direct.

Adaptive Algorithm

Simple Adaptive Scheme

If there are fewer panels than multipole coefficients, calculate the panels' influence directly.

- Similarly, local expansions are not used if there are fewer evaluation points than local expansion coefficients.
- Retains O(mn) complexity for nonuniform panel distributions.

Translating Sphere

Potential Distribution

Potential given by $\psi(x) = -\frac{x_3}{2\|x\|^3}$.
Charge given by $\sigma(x) = \frac{-3}{8\pi}x_3$.

Translating Sphere

Discretization Convergence

Translating Sphere

...Discretization Convergence

- Error should decay like $\frac{1}{n}$.
- Multipole approximations eventually interfere.
- Higher-order multipole expansions needed for higher accuracy.

Two Sphere Example

Potential Distribution

Potential on each sphere: ψ(x) = -^{x₃}/_{2||x||³}.
Does not correspond to a simple physical problem.

Two Sphere Example

Matrix-Vector Product Cost

Two Sphere Example

...Matrix-Vector Product Cost

- Direct matrix-vector product cost increases like n^2 .
- Multipole matrix-vector product cost increases like n.
- The slope for the multipole algorithm depends on accuracy.
- For order 2 expansions, breakpoint is about n = 400.

Complexity Summary

For an integral equation discretized with *n* panels:

- Gaussian elimination: $O(n^3)$.
- GCR, direct M-V $O(n^2)$.
- Multipole accelerated GCR O(mn).

Precorrected-FFT Acceleration

- Project panel charges on grid $q_g = Wq$.
- Compute using FFT's grid potentials due to grid charges $\psi_g = Hq_g$.
- Interpolate grid potentials onto panels $\psi = V \psi_g$.
- Compute near interactions directly $\psi_{a,b} = P_{a,b}q_b$.

The FFT Grid Selected To Balance Costs

• Grid Selected So Direct Cost equals FFT Cost.

• Finer Problem Discretizations Usually Yield Finer Grids.

Inhomogeneity Problem

• Inhomogeneity - Empty Grid due to FFT - Inefficiency

Refining Cube Discretization - Worsening Inhomogenity <u>MV Product Time</u>

Summary

Solving Discretized Integral Equations **GCR plus Fast Matrix-Vector Products** Multipole Algorithms Multipole Representation. **Basic Hierarchy Algorithmic Improvements** Local Expansions Adaptive Algorithms **Computational Results Precorrected-FFT Algorithms**