Introduction to Simulation - Lecture 22

Integral Equation Methods

Jacob White

Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Outline

Integral Equation Methods Exterior versus interior problems Start with using point sources Standard Solution Methods in 2-D Galerkin Method **Collocation Method** Issues in 3-D **Panel Integration**

Exterior Problem in Electrostatics

What is the capacitance?Capacitance = $\stackrel{\text{Dielectric}}{\text{Permitivity}} \int_{surface} \frac{\partial \Psi}{\partial n}$

Drag Force in a Microresonator

What is common about these problems.

Exterior Problems

Drag Force in MEMS device - fluid (air) creates drag. Coupling in a Package - Fields in exterior create coupling Capacitance of a Signal Line - Fields in exterior. Quantities of Interest are on the surface MEMS device - Just want surface traction force Package - Just want coupling between conductors Signal Line - Just want surface charge. **Exterior Problem is linear and space-invariant** MEMS - Exterior Stokes Flow equation (linear). Package - Maxwell's equations in free space (linear). Signal Line - Laplace's equation in free space (linear).

But problems are geometrically very complex!

Exterior Problems

Why not use Finite-Difference or FEM methods

Simple Idea

u is given on surface

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{outside}$$

Let
$$u = \log \left(\sqrt{\left(x - x_0\right)^2 + \left(y - y_0\right)^2} \right)$$

 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ outside **Problem Solved**

Does not match boundary conditions!

Simple Idea

"More Points"

u is given on surface

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{outside}$$

Let
$$u = \sum_{i=1}^{n} \omega_i \log \left(\sqrt{(x - x_i)^2 + (y - y_i)^2} \right) = \sum_{i=1}^{n} \omega_i G(x - x_i, y - y_i)$$

Pick the ω_i 's to match the boundary conditions!

Simple Idea

"More Points Equations"

Source Strengths selected to give correct potential at test points.

Computational results using points approach

Circle with Charges r=9.5 /

Potentials on the Circle

R=10

Integral Formulation

Limiting Argument

Want to smear point charges onto surface

Results in an Integral Equation $\Psi(x) = \int_{surface} G(x, x') \sigma(x') dS'$

How do we solve the integral equation?

Basis Function Approach

Basic Idea

Represent
$$\sigma(x) = \sum_{i=1}^{n} \omega_i \underbrace{\varphi_i(x)}_{\text{Basis Function}}$$

Example Basis Represent circle with straight lines Assume σ is constant along each line

The basis functions are "on" the surface Can be used to approximate the density May also approximate the geometry

Basis Function Approach

Geometric Approximation is not new.

Piecewise Straight surface basis Triangles for 2-D FEM Functions approximate the circle approximate the circle too!

$$\Psi(x) = \int_{\substack{approx\\surface}} G(x, x') \sum_{i=1}^{n} \omega_{i} \varphi_{i}(x') dS'$$

Basis Function Approach

Piecewise Constant Straight Sections Example.

Pick a set of n Points on the surface
 Define a new surface by connecting points with n lines.
 Define φ_i(x) = 1 if x is on line l_i otherwise, φ_i(x) = 0

$$\Psi(x) = \int_{\substack{approx\\surface}} G(x,x') \sum_{i=1}^{n} \omega_i \varphi_i(x') dS' = \sum_{i=1}^{n} \omega_i \int_{line \ l_i} G(x,x') dS'$$

How do we determine the ω_i 's?

Basis Function Approach

Residual Definition and minimization

$$R(x) \equiv \Psi(x) - \int_{approx} G(x, x') \sum_{i=1}^{n} \omega_{i} \varphi_{i}(x') dS'$$

We will pick the ω_i 's to make R(x) small.

surface

General Approach: Pick a set of test functions ϕ_1, \ldots, ϕ_n , and force R(x) to be orthogonal to the set

 $\int \phi_i(x) R(x) dS = 0 \text{ for all } i.$

Basis Function Approach

Residual minimization using test functions

$$\int \phi_i(x) R(x) dS = \int \phi_i(x) \Psi(x) dS - \int \int \int_{approx surface} \phi_i(x) G(x, x') \sum_{j=1}^n \omega_j \varphi_j(x') dS' dS = 0$$

We will generate different methods by choosing the ϕ_1, \ldots, ϕ_n ,

Collocation: $\phi_i(x) = \delta(x - x_{t_i})$ (point-matching) Galerkin Method: $\phi_i(x) = \varphi_i(x)$ (basis = test)

Basis Function Approach

Collocation

Basis Function Approach

Centroid Collocation for Piecewise Constant Bases

 $\Psi(x_{t_i}) = \sum_{j=1}^n \omega_j \int_{approx} G(x_{t_i}, x') \varphi_j(x') dS'$

approx surface

Collocation point in line center

$$\Psi(x_{t_i}) = \sum_{j=1}^n \omega_j \underbrace{\int_{line_j} G(x_{t_i}, x') dS'}_{A_{i,j}}$$

Basis Function Approach

Centroid Collocation Generates a nonsymmetric A

$$\Psi(x_{t_{i}}) = \sum_{j=1}^{n} \omega_{j} \int_{line_{j}} G(x_{t_{i}}, x') dS'$$

$$A_{i,j}$$

$$A_{i,$$

Basis Function Approach

Galerkin for Piecewise Constant Bases

$$\begin{bmatrix} A_{1,1} & \cdots & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ A_{n,1} & \cdots & \cdots & A_{n,n} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \vdots \\ \omega_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$

Basis Function Approach

Piecewise Constant Basis

Integral Equation:
$$\Psi(x) = \int_{surface} \frac{1}{\|x - x'\|} \sigma(x') dS'$$

Basis Function Approach

Centroid Collocation

Basis Function Approach

Calculating Matrix Elements

One point quadrature Approximation

Four point quadrature Approximation SMA-HPC ©2003 MIT

Basis Function Approach

Calculating "Self-Term"

Basis Function Approach

Calculating "Self-Term" Tricks of the trade

Basis Function Approach

Calculating "Self-Term" Other Tricks of the trade

If panel is a flat polygon, analytical formulas exist
 Curve panels can be handled with projection

Basis Function Approach

Galerkin (test=basis)

$$\begin{aligned}
\int \varphi_{i}(x)\Psi(x)dS &= \sum_{j=1}^{n} \omega_{j} \iint \varphi_{i}(x)G(x,x')\varphi_{j}(x')dS'dS \\
\xrightarrow{b_{i}} & For \text{ piecewise constant Basis} \\
\int \Psi(x)dS' &= \sum_{j=1}^{n} \omega_{j} \int_{panel i} \int_{panel j} \frac{1}{\|x-x'\|} dS'dS \\
\xrightarrow{b_{i}} & \xrightarrow{b_{i}} & \xrightarrow{b_{i}} & \xrightarrow{b_{i}} & \xrightarrow{b_{i}} \\
& & & & & \\
\int \Psi(x)dS' &= \sum_{j=1}^{n} \omega_{j} \int_{panel i} \int_{panel j} \frac{1}{\|x-x'\|} dS'dS \\
\xrightarrow{A_{i,j}} & & & \\
\int \frac{A_{1,1} \cdots \cdots A_{1,n}}{\vdots \cdots \vdots \vdots} \\
& & & & & \\
\vdots & & & & \\
A_{n,1} \cdots \cdots A_{n,n} & \begin{bmatrix} \omega_{1} \\ \vdots \\ \vdots \\ \omega_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ \vdots \\ b_{n} \end{bmatrix}
\end{aligned}$$

Basis Function Approach

Problem with dense matrix

Integral Equation Method Generate Huge Dense Matrices

Gaussian Elimination Much Too Slow!

Summary

Integral Equation Methods Exterior versus interior problems Start with using point sources **Standard Solution Methods Collocation Method** Galerkin Method Next Time \rightarrow "Fast" Solvers Use a Krylov-Subspace Iterative Method Compute MV products Approximately