
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.341: Discrete-Time Signal Processing

Fall 2005

Solutions for Problem Set 6

Issued: Tuesday, October 25 2005.

Problem 6.1

OSB Problem 4.52

(a) We use the polyphase implementation discussed in OSB pages 182–184.

h1[n] = aδ[n] + cδ[n − 1] + eδ[n − 2]

h2[n] = bδ[n] + dδ[n − 1]

h3[n] = δ[n − 1]

(b) For h[n], 5 multiplications are required for each sample of y1[n].

For h1[n], 1.5 multiplications are required for each sample of w1[n]. For h2[n], 1 multipli
cation is required for each sample of w2[n]. If h3[n] is implemented as an FIR filter, then
2 multiplications are required for each sample of w3[n]. In total, 4.5 multiplications are

required for each sample of y2[n].

Note that if h3[n] were built into the flowgraph as a delay, then 2.5 multiplications would

be required for each sample of y2[n].

Problem 6.2

OSB Problem 4.53

(a) First, we plot X(ejω) (left plot below), and R0(e
jω), after low-pass filtering with cut-off

at π/2 (right plot below):

X(e) R0(e)jω jω

−π π ω −π/2 π/2 ω

The downsampler expands the frequency axis. Since R0(e
jω) is bandlimited to π/2, no

aliasing occurs (left plot below). The upsampler compresses the frequency axis by a factor
of 2 (right plot below).

X0(e) G0(e)

−π π

jω jω

−π π ω ω

R0(e
jω)The lowpass filter cuts off at π/2, hence Y0(e

jω) = as sketched above.

Although not a formal requirement for this problem, additional insight can be gained by
considering the bottom branch of the system. R1(e

jω) appears in the plot below.

R1(e)

ω

jω

−2π −π π 2π

R1(e
jω) is not bandlimited to π/2, so aliasing appears in X1(e

jω) after expanding the
frequency axis due to downsampling. However, since R1(e

jω) is zero from −π/2 to π/2,
the aliased component does not distort the original one (left plot below). The upsampler
compresses the frequency axis by a factor of 2 (right plot below).

X1(e) G1(e)

−ππ−π πω ω

jω jω

R1(e
jω)The highpass filter cuts off at π/2, hence Y1(e

jω) = as sketched above.

(b)

jω) jω)X(ejω)R0(e = H0(e
jω)X0(e = 0.5R0(e) + 0.5R0(e

ω(j
2

ωj
2

+π))
jω)G0(e = X0(e

j2ω)
j(ω+π))= 0.5R0(e

jω) + 0.5R0(e
jω)X(e= 0.5H0(e

jω) + 0.5H0(e
j(ω+π))X(ej(ω+π))

jω) jω)H0(e
jω)Y0(e = G0(e

jω)X(e jω)H0(e
j(ω+π))X(ej(ω+π))= 0.5H0

2(e jω) + 0.5H0(e

(c) Similar to part (b), we have:

jω) jω)X(e jω)H1(e
j(ω+π))X(ej(ω+π))Y1(e = 0.5H1

2(e jω) + 0.5H1(e

Since H1(e
jω) = H0(e

j(ω+π)),

Y0(e
jω)

Y1(e
jω)

=

=

0.5H2
0 (e

jω)X(ejω) + 0.5H1(e
jω)H0(e

j(ω))X(ej(ω+π))

0.5H2
1 (e

jω)X(ejω) + 0.5H1(e
jω)H0(e

j(ω))X(ej(ω+π))

Y (ejω) =

=

Y0(e
jω) + Y1(e

jω)

0.5[H2
1 (e

jω) + H2
0 (e

jω)]X(ejω) + H1(e
jω)H0(e

j(ω))X(ej(ω+π))

Thus, the general condition to guarantee that y[n] is proportional to x[n − nd] for any
stable input x[n]:

H1
2(ejω) + H2 jω)0 (e = Ke −jndω

jω)H0(e
j(ω))H1(e = 0

i.e.,

jω)H0
2(ej(ω+π)) + H0

2(e = Ke −jndω

j(ω+π))H0(e
j(ω))H0(e = 0

Problem 6.3

(a) We need 4 multiplications for each value before the downsampler and 8 multiplications
on average for each output sample of y.

(b) We can write the system transfer function:

(

−1
) (

−1
)

1 −21 + 1 z 1 + 1 z 1 + 12 z−1 + z7 35 35H(z) = (5
) () =

−21 − 1 z−1 1 + 1 z−1 1 − 1 z3 3 9

This can be implemented using the flowgraph shown below:

2

x
y

z
1–

12

35

z
1–

1

35
------ 1

9

z
1–

2

(c) Now the whole computational requirement is only 3 multiplications on average for each
output sample of y.

Problem 6.4

(Problem 4, Spring 2005 Midterm)

(a) This part is a straightforward application of the polyphase decomposition. The number
of polyphase components should be a multiple of 3 to be able to take advantage of the
downsampling.

The polyphase decomposition and swapping the summer with the downsampling yields

xa[n] ya[n]

z−1

z−1

↓ 3

↓ 3

↓ 3a0 + a3z
−3

a1 + a4z
−3

a2

�

{

{

{

Now applying the downsampling noble identity yields

xa[n] ya[n]

z−1

z−1

↓ 3

↓ 3

↓ 3

a0 + a3z
−1

a1 + a4z
−1

a2

This is efficient because the filtering is done at the lowest possible sampling rate.

(b) ↑ 3 and ↓ 2 can be swapped since 3 and 2 are coprime. This result can seen by comparing
the following two systems:

x[n] wA[n] yA[n]
System A: � ↓ M � ↑ L

wB[n] yB[n]System B: x[n]
� ↑ L � ↓ M �

The following equations describe the stages of System A:

wA[n] = x[2n]

wA[n
3] if n is an integer,

yA[n] = 3

0 otherwise.

The following equations describe the stages of System B:

x[n
3] if n is an integer,

wB [n] = 3

0 otherwise.

yB[n] = wB [2n]

Therefore,

n x[23

n] if is an integer,
yA[n] = 3

0 otherwise.

and
{

2n x[23
n] if is an integer,

yB[n] = 3

0 otherwise.

Because for all integer values of n for which n is an integer, 2n is also an integer and 3 3
vice-versa, the systems are equivalent and can be swapped.

This swap therefore leaves Hb(z), which can be written in terms of z6, in front of a
downsampling by 6. An efficient implementation is then obtained by applying the down-
sampling noble identity:

b0 + b1z
−1 + b2z

−2xb[n] → ↓ 6 → → ↑ 3 → yb[n]

(c) Here it is easy to say, “I can almost write Hc(z) as a function of z6.” To take advantage
of this near miss, implement Hc(z) as c0 + c2z

−6 + c3z
−12 in parallel combination with

−2c1z :

xc[n] yc[n]

↓ 6

↓ 6 ↑ 3c0 + c2z
−6 + c3z

−

c1z
−2

12

Now application of downsampling identities gives:

xc[n] yc[n]

↓ 2 ↓ 3

↓ 6 ↑ 3c0 + c2z
−1 + c3z

−2

c1z
−1

Note also that this answer can be obtained in a perfectly systematic way by applying a
polyphase decomposition. It turns out that some polyphase filters are zero.

∑ ∑

Problem 6.5

(a) After a polyphase decomposition of h[n] one obtains the block diagram below:

d[n]w[n]
x[n] xe[n]

xo[n]

E0(z)

E1(z)

z−1

↑ 2 ↓ 2

↓ 2

Now since xo[n] = 0 for all n and xe[n] = w[n] for all n, d[n] is the output of an LTI filter
E0(z) driven by input w[n], where E0(z) is the polyphase component containing only even
values of h[n], i.e. e0[n] = h[2n]. This gives us simply:

w[n] → h[2n] → d[n]

(b) Since upon simplification it becomes evident that the system is LTI, we know that the
output must be WSS for the input random sequence specified. Because of this, Rdd[n, m]
has no dependence on n and is simply

∞ ∞

Rdd[n, m] = σ2 e0[k]e0[m + k] = σ2 h[2k]h[2(m + k)] ,w w

k=−∞ k=−∞

the convolution of σ2 δ[p] with h[2p] ∗ h[−2p] for integer p.w

Problem 6.6

(a) There is one output sample generated for every pair of input samples. Even input samples
require 3 multiplies and odd input samples require 2 multiplies. Thus each pair requires
5 multiplies.

(b) Applying the compressor identity to the previous structure results in:

2H(z) = H0(z
2) + z −1H1(z).

From the difference equations in the previous part we have:

1 −1−1 + z
H0(z) = 3 8 ,

−11 − 1 z4

and
1

H1(z) = 12 .
−11 − 1 z4

∑

[] [] []

(

(

(

(

((

Thus,

1 −2 1 −1 −1 1 1 −1−1 + z + z 3 (1 − 3 z−1)(1 + z−1) −1 + z12 4 2 3 4=
−2 1 −1

H(z) = 3

1
8

− 1 z
=

(1 − 1 z−1)(1 + z−1) 1 − 1 z
.

4 2 2 2

Therefore, a = 1/2, b = −1/3 and c = 1/4.

(c) In this implementation 3 multiplies are required for every input sample. For every output
sample we need to calculate 2 values of v[n]. Altogether we need 6 multiplies per output
sample.

Problem 6.7

(a)

2 3 5

S(z) = + =
−21 − 1 z−1 1 + 1 z−1 1 + 1 z−1 − 1 z

.
3 2 6 6

Thus, a1 = −1/6, a2 = 1/6.

(b) The normal (Yule-Walker) equations are:

2

φs[i] = akφs[i − k], i = 1, 2,
k=1

or, in matrix form:
φs[0] φs[1] a1 φs[1] = .
φs[1] φs[0] a2 φs[2]

3)
nu[n], s2[n] = 3(−1(c) Denote s1[n] = 2(1

2)
nu[n]. Then for m > 0,

9 1
)m

φs1
[m] =

2 3

1
)m

φs2
[m] = 12 −

2

36 1
)m

φs12
[m] =

7 3

36 1
)m

φs21
[m] = − .

7 2

Thus,

135 1
)|m| 120 1

)|m|

φs[m] = + − .
14 3 7 2

So, φs[0] = 26.78, φs[1] = −5.36 and φs[2] = 5.36.

∑

(d) Substituting the values of φs[i] in the normal equations and solving for the ai’s results in
a1 = −1/6, a2 = 1/6.

(e) These values are the same as those we found in part (a), as expected.

(f) The normal (Yule-Walker) equations are:

3

φs[i] = akφs[i − k], i = 1, 2, 3,
k=1

or, in matrix form:

φs[0] φs[1] φs[2] a1 φs[1]
 φs[1] φs[0] φs[1] a2 = φs[2] .

φs[2] φs[1] φs[0] a3 φs[3]

(g) φs[3] = −1.79.

(h) Substituting the values of φs[i] in the normal equations and solving for the ai’s results in
a1 = −1/6, a2 = 1/6, a3 = 0.

(i) The signal s[n] is the impulse response of an all-pole filter with two poles, i.e. second
order. Therefore, ak = 0 for k > 2.

(j) No, since the signal corresponds to the impulse response of a second order filter. The
higher order coefficients will all be 0.

