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Problem 6.1 

OSB Problem 4.52 

(a) We use the polyphase implementation discussed in OSB pages 182–184. 

h1[n] = aδ[n] + cδ[n − 1] + eδ[n − 2] 

h2[n] = bδ[n] + dδ[n − 1] 

h3[n] = δ[n − 1] 

(b) For h[n], 5 multiplications are required for each sample of y1[n]. 

For h1[n], 1.5 multiplications are required for each sample of w1[n]. For h2[n], 1 multipli
cation is required for each sample of w2[n]. If h3[n] is implemented as an FIR filter, then 
2 multiplications are required for each sample of w3[n]. In total, 4.5 multiplications are

required for each sample of y2[n].


Note that if h3[n] were built into the flowgraph as a delay, then 2.5 multiplications would

be required for each sample of y2[n]. 

Problem 6.2 

OSB Problem 4.53 

(a) First, we plot X(ejω) (left plot below), and R0(e
jω), after low-pass filtering with cut-off 

at π/2 (right plot below): 
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The downsampler expands the frequency axis. Since R0(e
jω) is bandlimited to π/2, no 

aliasing occurs (left plot below). The upsampler compresses the frequency axis by a factor 
of 2 (right plot below). 
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R0(e
jω)The lowpass filter cuts off at π/2, hence Y0(e

jω) = as sketched above. 

Although not a formal requirement for this problem, additional insight can be gained by 
considering the bottom branch of the system. R1(e

jω) appears in the plot below. 
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R1(e
jω) is not bandlimited to π/2, so aliasing appears in X1(e

jω) after expanding the 
frequency axis due to downsampling. However, since R1(e

jω) is zero from −π/2 to π/2, 
the aliased component does not distort the original one (left plot below). The upsampler 
compresses the frequency axis by a factor of 2 (right plot below). 

X1(e ) G1(e ) 

−ππ−π πω ω 

jω jω

R1(e
jω)The highpass filter cuts off at π/2, hence Y1(e

jω) = as sketched above. 



(b) 
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Thus, the general condition to guarantee that y[n] is proportional to x[n − nd] for any 
stable input x[n]: 
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Problem 6.3 

(a) We need 4 multiplications for each value before the downsampler and 8 multiplications 
on average for each output sample of y. 

(b) We can write the system transfer function: 
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This can be implemented using the flowgraph shown below: 
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(c) Now the whole computational requirement is only 3 multiplications on average for each 
output sample of y. 

Problem 6.4 

(Problem 4, Spring 2005 Midterm) 

(a) This part is a straightforward application of the polyphase decomposition. The number 
of polyphase components should be a multiple of 3 to be able to take advantage of the 
downsampling. 

The polyphase decomposition and swapping the summer with the downsampling yields 
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Now applying the downsampling noble identity yields
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This is efficient because the filtering is done at the lowest possible sampling rate. 

(b) ↑ 3 and ↓ 2 can be swapped since 3 and 2 are coprime. This result can seen by comparing 
the following two systems: 

x[n] wA[n] yA[n]
System A: � ↓ M � ↑ L 

wB[n] yB[n]System B: x[n] 
� ↑ L � ↓ M � 

The following equations describe the stages of System A:


wA[n] = x[2n]


wA[n 
3 ] if n is an integer, 

yA[n] = 3 

0 otherwise.


The following equations describe the stages of System B:


x[n 
3 ] if n is an integer, 

wB [n] = 3 

0 otherwise. 

yB[n] = wB [2n]


Therefore,
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and 
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2n x[23 
n ] if is an integer, 

yB[n] = 3 

0 otherwise. 

Because for all integer values of n for which n is an integer, 2n is also an integer and 3 3 
vice-versa, the systems are equivalent and can be swapped. 

This swap therefore leaves Hb(z), which can be written in terms of z6, in front of a 
downsampling by 6. An efficient implementation is then obtained by applying the down-
sampling noble identity: 

b0 + b1z
−1 + b2z

−2xb[n] → ↓ 6 → → ↑ 3 → yb[n] 

(c) Here it is easy to say, “I can almost write Hc(z) as a function of z6.” To take advantage 
of this near miss, implement Hc(z) as c0 + c2z

−6 + c3z
−12 in parallel combination with 
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Now application of downsampling identities gives:
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Note also that this answer can be obtained in a perfectly systematic way by applying a 
polyphase decomposition. It turns out that some polyphase filters are zero. 
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Problem 6.5 

(a) After a polyphase decomposition of h[n] one obtains the block diagram below: 

d[n]w[n] 
x[n] xe[n] 
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Now since xo[n] = 0 for all n and xe[n] = w[n] for all n, d[n] is the output of an LTI filter 
E0(z) driven by input w[n], where E0(z) is the polyphase component containing only even 
values of h[n], i.e. e0[n] = h[2n]. This gives us simply: 

w[n] → h[2n] → d[n] 

(b) Since upon simplification it becomes evident that the system is LTI, we know that the 
output must be WSS for the input random sequence specified. Because of this, Rdd[n, m] 
has no dependence on n and is simply 

∞ ∞ 

Rdd[n, m] = σ2 e0[k]e0[m + k] = σ2 h[2k]h[2(m + k)] ,w w 

k=−∞ k=−∞ 

the convolution of σ2 δ[p] with h[2p] ∗ h[−2p] for integer p.w

Problem 6.6 

(a) There is one output sample generated for every pair of input samples. Even input samples 
require 3 multiplies and odd input samples require 2 multiplies. Thus each pair requires 
5 multiplies. 

(b) Applying the compressor identity to the previous structure results in: 

2H(z) = H0(z 
2) + z −1H1(z ). 

From the difference equations in the previous part we have: 
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Therefore, a = 1/2, b = −1/3 and c = 1/4. 

(c) In this implementation 3 multiplies are required for every input sample. For every output 
sample we need to calculate 2 values of v[n]. Altogether we need 6 multiplies per output 
sample. 

Problem 6.7 

(a)

2 3 5
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Thus, a1 = −1/6, a2 = 1/6. 

(b) The normal (Yule-Walker) equations are: 
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φs[i] = akφs[i − k], i = 1, 2, 
k=1 

or, in matrix form: 
φs[0] φs[1] a1 φs[1] = . 
φs[1] φs[0] a2 φs[2] 

3 )
nu[n], s2[n] = 3(−1(c) Denote s1[n] = 2(1

2 )
nu[n]. Then for m > 0, 

9 1 
)m 

φs1
[m] = 

2 3 

1 
)m 

φs2
[m] = 12 − 

2 

36 1 
)m 

φs12 
[m] = 

7 3 

36 1 
)m 

φs21 
[m] = − . 

7 2 

Thus, 

135 1 
)|m| 120 1 

)|m| 

φs[m] = + − . 
14 3 7 2 

So, φs[0] = 26.78, φs[1] = −5.36 and φs[2] = 5.36. 
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(d) Substituting the values of φs[i] in the normal equations and solving for the ai’s results in 
a1 = −1/6, a2 = 1/6. 

(e) These values are the same as those we found in part (a), as expected. 

(f) The normal (Yule-Walker) equations are: 

3 

φs[i] = akφs[i − k], i = 1, 2, 3, 
k=1 

or, in matrix form: 

     

φs[0] φs[1] φs[2] a1 φs[1] 
 φs[1] φs[0] φs[1]  a2  =  φs[2]  . 

φs[2] φs[1] φs[0] a3 φs[3] 

(g) φs[3] = −1.79. 

(h) Substituting the values of φs[i] in the normal equations and solving for the ai’s results in 
a1 = −1/6, a2 = 1/6, a3 = 0. 

(i) The signal s[n] is the impulse response of an all-pole filter with two poles, i.e. second 
order. Therefore, ak = 0 for k > 2. 

(j) No, since the signal corresponds to the impulse response of a second order filter. The 
higher order coefficients will all be 0. 


