Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.341: Discrete-Time Signal Processing

Fall 2005

Problem Set 1 Solutions

Issued: Thursday, September 8, 2005

Problem 1.1 (OSB 2.1)
Answers are in the back of the book but have a few typos:
(d) The system is causal when $n_{0} \geq 0$, not when $n_{0} \leq 0$.
(h) (not assigned but for your benefit) The system is also causal.

Problem 1.2 (OSB 2.6)
(a)

$$
\begin{gathered}
y[n]-\frac{1}{2} y[n-1]=x[n]+2 x[n-1]+x[n-2] \\
Y\left(e^{j \omega}\right)\left[1-\frac{1}{2} e^{-j \omega}\right]=X\left(e^{j \omega}\right)\left[1+2 e^{-j \omega}+e^{-j 2 \omega}\right] \\
H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}=\frac{1+2 e^{-j \omega}+e^{-j 2 \omega}}{1-\frac{1}{2} e^{-j \omega}}
\end{gathered}
$$

(b)

$$
\begin{gathered}
H\left(e^{j \omega}\right)=\frac{1-\frac{1}{2} e^{-j \omega}+e^{-j 3 \omega}}{1+\frac{1}{2} e^{-j \omega}+\frac{3}{4} e^{-j 2 \omega}}=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)} \\
Y\left(e^{j \omega}\right)\left[1+\frac{1}{2} e^{-j \omega}+\frac{3}{4} e^{-j 2 \omega}\right]=X\left(e^{j \omega}\right)\left[1-\frac{1}{2} e^{-j \omega}+e^{-j 3 \omega}\right] \\
y[n]+\frac{1}{2} y[n-1]+\frac{3}{4} y[n-2]=x[n]-\frac{1}{2} x[n-1]+x[n-3]
\end{gathered}
$$

Problem 1.3 (OSB 2.11)
We can write $x[n]$ as a sum of exponentials and compute the response of the system to each exponential:

For $x[n]=\sin \left(\frac{\pi n}{4}\right)$,

$$
x[n]=\sin \left(\frac{\pi n}{4}\right)=\frac{1}{2 j}\left[e^{j \frac{\pi}{4} n}-e^{-j \frac{\pi}{4} n}\right]
$$

Response to $e^{j \frac{\pi}{4} n}$:

$$
H\left(e^{j \frac{\pi}{4}}\right) e^{j \frac{\pi}{4} n}=\left[\frac{1-e^{-j 2 \frac{\pi}{4}}}{1+\frac{1}{2} e^{-j 4 \frac{\pi}{4}}}\right] e^{j \frac{\pi}{4} n}=2(1+j) e^{j \frac{\pi}{4} n}=2 \sqrt{2} e^{j \frac{\pi}{4}} e^{j \frac{\pi}{4} n}
$$

Response to $e^{-j \frac{\pi}{4} n}$:

$$
\begin{gathered}
H\left(e^{-j \frac{\pi}{4}}\right) e^{-j \frac{\pi}{4} n}=\left[\frac{1-e^{j 2 \frac{\pi}{4}}}{1+\frac{1}{2} e^{j 4 \frac{\pi}{4}}}\right] e^{-j \frac{\pi}{4} n}=2(1-j) e^{-j \frac{\pi}{4} n}=2 \sqrt{2} e^{-j \frac{\pi}{4}} e^{-j \frac{\pi}{4} n} \\
y[n]=\frac{1}{2 j}\left[H\left(e^{j \frac{\pi}{4}}\right) e^{j \frac{\pi}{4} n}-H\left(e^{-j \frac{\pi}{4}}\right) e^{-j \frac{\pi}{4} n}\right]=\frac{1}{2 j}\left[2 \sqrt{2}\left[e^{j\left(\frac{\pi}{4} n+\frac{\pi}{4}\right)}-e^{-j\left(\frac{\pi}{4} n+\frac{\pi}{4}\right)}\right]\right] \\
y[n]=2 \sqrt{2} \sin \left(\frac{\pi(n+1)}{4}\right)
\end{gathered}
$$

Note: Answer in the back of the book has a typo.
For $x[n]=\sin \left(\frac{7 \pi n}{4}\right)$, we have to map the frequency $\frac{7 \pi}{4}$ into the $-\pi$ to π range where $H\left(e^{j \omega}\right)$ is defined.

$$
x[n]=\sin \left(\frac{7 \pi n}{4}\right)=\sin \left(-\frac{\pi n}{4}\right)=-\sin \left(\frac{\pi n}{4}\right)
$$

Then from above we have:

$$
y[n]=-2 \sqrt{2} \sin \left(\frac{\pi(n+1)}{4}\right)
$$

Problem 1.4 (OSB 2.55)
Yes. Suppose $x_{1}[n]=\cos (\omega n)$ and $x_{2}[n]=\cos ((\omega+2 \pi) n)$. Then $x_{1}[n]=x_{2}[n]$ and the inputs are identical. All three systems behave deterministically, so the intermediate signals and the respective outputs A_{1} and A_{2} will be identical. Thus A will be periodic in ω (with period 2π). Recall that all distinct frequencies in discrete time fall within a continuous range of 2π. More generally for a sinusoidal input, the output of the overall system will be periodic in ω regardless of the systems in between the input and output (since the inputs $x_{1}[n]$ and $x_{2}[n]$ above will always be equal).

Problem 1.5 (OSB 3.4)

(a) If the Fourier transform is known to exist, then the ROC must include the unit circle. Thus, the ROC of $X(z)$ is $\frac{1}{3}<|z|<2$ and therefore $x[n]$ is a two-sided sequence.
(b) Two: $\frac{1}{3}<|z|<2$ and $2<|z|<3$.
(c) No. Stability requires the ROC to include the unit circle and causality requires the ROC to extend outward from the outermost pole and include $z=\infty$. It is not possible to satisfy both conditions at once, so it is not possible to have both stability and causality.

Problem 1.6 (OSB 3.9)
(a) For $H(z)$ to be causal the ROC must extend outward from the outermost pole and include $z=\infty$. The ROC is thus $|z|>\frac{1}{2}$.
(b) Yes, the system is stable since the ROC includes the unit circle.
(c)

$$
\begin{gathered}
y[n]=-\frac{1}{3}\left(-\frac{1}{4}\right)^{n} u[n]-\frac{4}{3}(2)^{n} u[-n-1] \\
Y(z)=-\frac{\frac{1}{3}}{1+\frac{1}{4} z^{-1}}+\frac{\frac{4}{3}}{1-2 z^{-1}}=\frac{1+z^{-1}}{\left(1+\frac{1}{4} z^{-1}\right)\left(1-2 z^{-1}\right)}
\end{gathered}
$$

Since the first term of $y[n]$ is right-sided, the corresponding ROC constraint is $|z|>\frac{1}{4}$; likewise, the second term being left-sided leads to the ROC constraint $|z|<2$. Therefore, the ROC for $Y(z)$ is $\frac{1}{4}<|z|<2$.

$$
X(z)=\frac{Y(z)}{H(z)}=\frac{\left(1+z^{-1}\right)}{\left(1+\frac{1}{4} z^{-1}\right)\left(1-2 z^{-1}\right)} \frac{\left(1-\frac{1}{2} z^{-1}\right)\left(1+\frac{1}{4} z^{-1}\right)}{\left(1+z^{-1}\right)}=\frac{1-\frac{1}{2} z^{-1}}{1-2 z^{-1}}
$$

Only the pole at $z=2$ remains, so the ROC for $X(z)$ is $|z|<2$.
(d)

$$
\begin{gathered}
H(z)=\frac{1+z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+\frac{1}{4} z^{-1}\right)}=\frac{2}{1-\frac{1}{2} z^{-1}}-\frac{1}{1+\frac{1}{4} z^{-1}}, \quad|z|>\frac{1}{2} \\
h[n]=2\left(\frac{1}{2}\right)^{n} u[n]-\left(-\frac{1}{4}\right)^{n} u[n]
\end{gathered}
$$

(e)

$$
\begin{gathered}
H(z)=\frac{1+z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+\frac{1}{4} z^{-1}\right)}=\frac{1+z^{-1}}{1-\frac{1}{4} z^{-1}-\frac{1}{8} z^{-2}}=\frac{Y(z)}{X(z)} \\
Y(z)-\frac{1}{4} z^{-1} Y(z)-\frac{1}{8} z^{-2} Y(z)=X(z)+z^{-1} X(z) \\
y[n]-\frac{1}{4} y[n-1]-\frac{1}{8} y[n-2]=x[n]+x[n-1] .
\end{gathered}
$$

Problem 1.7 (OSB 3.40)
(a) Translating the block diagram into z-transforms,

$$
\begin{gathered}
{[X(z)-W(z)] H(z)+E(z)=W(z)} \\
W(z)=\frac{H(z)}{1+H(z)} X(z)+\frac{1}{1+H(z)} E(z) \\
H_{1}(z)=\frac{H(z)}{1+H(z)} \quad \text { and } \quad H_{2}(z)=\frac{1}{1+H(z)}
\end{gathered}
$$

(b) $H_{1}(z)=z^{-1}$
$H_{2}(z)=1-z^{-1}$
(c) $H(z)$ has a pole at $z=1$ on the unit circle so it is not stable. But both $H_{1}(z)$ and $H_{2}(z)$ have poles at $z=0$ and are stable $(H(z)$ is causal).

Problem 1.8 (OSB 3.46)

(a) The ROC must contain the unit circle in order for $y[n]$ to be stable, thus the ROC for $Y(z)$ is: $\frac{1}{2}<|z|<2$.
(b) $y[n]$ is two-sided.
(c) Again the ROC must contain the unit circle for $x[n]$ to be stable, thus the ROC of $X(z)$ is: $|z|>\frac{3}{4}$.
(d) Yes, $x[n]$ is causal, since the ROC extends outward from the outermost pole and includes $z=\infty$.
(e) Since $x[n]$ is causal, we can use the initial-value theorem:

$$
x[0]=\lim _{z \rightarrow \infty} X(z)=0 .
$$

The limit goes to zero because $X(z)$ has a zero at $z=\infty$. Rational z-transforms have an equal number of poles and zeroes if we include the singularities at infinity. We can also verify the zero at $z=\infty$ by writing the mathematical expression for $X(z)$:

$$
X(z)=\frac{A z^{-1}\left(1-\frac{1}{4} z^{-1}\right)}{\left(1+\frac{3}{4} z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)},
$$

from which we see that as $z \rightarrow \infty, X(z) \rightarrow 0$.
(f) From the pole-zero diagrams for $Y(z)$ and $X(z)$ we have the following:

Poles of $Y(z): z=\frac{1}{2}$ and $z=2$. Zeroes of $Y(z): z=0$ and $z=\frac{1}{4}$.
Poles of $X(z): z=-\frac{3}{4}$ and $z=\frac{1}{2}$. Zeroes of $X(z): z=\infty$ and $z=\frac{1}{4}$.

$$
H(z)=\frac{Y(z)}{X(z)}
$$

Inverting $X(z)$ will turn the poles of $X(z)$ into zeroes and vice versa. As a result we have pole-zero cancellation at $z=\frac{1}{2}$ and $z=\frac{1}{4}$. $H(z)$ has zeroes at $z=0$ and $z=-\frac{3}{4}$, and poles at $z=2$ and $z=\infty$. Its ROC is $|z|<2$.

Alternatively, we could have determined $H(z)$ from the mathematical expressions for $Y(z)$ and $X(z)$:

$$
\begin{gathered}
Y(z)=\frac{B\left(1-\frac{1}{4} z^{-1}\right)}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-2 z^{-1}\right)} \\
H(z)=\frac{Y(z)}{X(z)}=\frac{B\left(1-\frac{1}{4} z^{-1}\right)}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-2 z^{-1}\right)} \frac{\left(1+\frac{3}{4} z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)}{A z^{-1}\left(1-\frac{1}{4} z^{-1}\right)}=\frac{C\left(1+\frac{3}{4} z^{-1}\right)}{z^{-1}\left(1-2 z^{-1}\right)},
\end{gathered}
$$

where $C=\frac{B}{A}$.
(g) Yes. $h[n]$ is anti-causal, since the ROC of $H(z)$ extends inward from the innermost pole and does include the origin $(z=0)$.

Problem 1.9

(ii) $1 / T_{1}=4 \times 10^{4}, 1 / T_{2}=10^{4}$

(iii) $1 / T_{1}=10^{4}, 1 / T_{2}=3 \times 10^{4}$

(b) From the figure below, the only portion of the spectrum which remains unaffected by the aliasing is $|\omega|<\pi / 3$. So if we choose $\omega_{c}<\pi / 3$, the overall system is LTI with a frequency response of:

$$
H_{c}(j \Omega)= \begin{cases}1 & \text { for }|\Omega|<\omega_{c} \times 6 \times 10^{3} \\ 0 & \text { otherwise } .\end{cases}
$$

Problem 1.10

$y[n]=y_{2}[n]$
Justification:
The input signal $x[n]$ is made up of three narrow-band pulses: pulse- 1 is a low-frequency pulse (whose peak is around 0.12π radians), pulse- 2 is a higher-frequency pulse (0.3π radians), and pulse- 3 is the highest-frequency pulse (0.5π radians).

Let $H\left(e^{j \omega}\right)$ be the frequency response of Filter A. We read off the following values from the frequency response magnitude and group delay plots:

$$
\begin{aligned}
\left|H\left(e^{j(0.12 \pi)}\right)\right| & \approx 1.8 \\
\left|H\left(e^{j(0.3 \pi)}\right)\right| & \approx 1.7 \\
\left|H\left(e^{j(0.5 \pi)}\right)\right| & \approx 0 \\
\tau_{g}(0.12 \pi) & \approx 40 \text { samples } \\
\tau_{g}(0.3 \pi) & \approx 80 \text { samples }
\end{aligned}
$$

From these values, we would expect pulse-3 to be totally absent from the output signal $y[n]$. Pulse- 1 will be scaled up by a factor of 1.8 and its envelope delayed by about 40 samples. Pulse- 2 will be scaled up by a factor of 1.7 and its envelope delayed by about 80 samples. The correct output is thus $y_{2}[n]$.

Problem 1.11

Uniform Distribution: $f_{x}(x)=\left\{\begin{array}{cc}\frac{1}{b-a} & a<x<b \\ 0 & \text { otherwise }\end{array}=\left\{\begin{array}{cc}\frac{1}{\Delta} & 0<x<\Delta \\ 0 & \text { otherwise }\end{array}\right.\right.$

$$
\begin{aligned}
& \mu=E[X]=\int_{-\infty}^{\infty} x f_{x}(x) d x=\int_{0}^{\Delta} \frac{1}{\Delta} x d x=\frac{\Delta}{2} \\
& \sigma^{2}=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-\mu^{2}=\int_{0}^{\Delta} \frac{1}{\Delta} x^{2} d x-\left(\frac{\Delta}{2}\right)^{2}=\frac{\Delta^{2}}{3}-\frac{\Delta^{2}}{4}=\frac{\Delta^{2}}{12}
\end{aligned}
$$

Problem 1.12

(a) $R_{y x}[m]=R_{x x}[m] * h[m]$, but $R_{x y}[m]=R_{y x}[-m]$ and $R_{x x}[m]=R_{x x}[-m]$. Thus $R_{x y}[m]=R_{x x}[m] * h[-m]$. Since $R_{x x}[m]=\delta[m]$,

$$
R_{x y}[m]=h[-m]= \begin{cases}1 & m=-2,-1,0 \\ 0 & \text { otherwise }\end{cases}
$$

Then $R_{y y}[m]=R_{x x}[m] * h[m] * h[-m]= \begin{cases}1 & m=-2,2 \\ 2 & m=-1,1 \\ 3 & m=0 \\ 0 & \text { otherwise }\end{cases}$
(b)

$$
\begin{aligned}
P_{x x} & =1 \\
P_{y y} & =3+2 e^{j \omega}+2 e^{-j \omega}+e^{2 j \omega}+e^{-2 j \omega} \\
& =3+4 \cos \omega+2 \cos (2 \omega)
\end{aligned}
$$

Problem 1.13 (OSB 4.5)

Answers are in the back of the book.

Problem 1.14 (OSB 2.89)
(a)

$$
\begin{aligned}
E\{x[n] x[n]\} & =\phi_{x x}[0] \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Phi_{x x}\left(e^{j \omega}\right) d \omega
\end{aligned}
$$

(b)

$$
\begin{aligned}
\Phi_{x x}\left(e^{j \omega}\right) & =\Phi_{w w}\left(e^{j \omega}\right)\left|H\left(e^{j \omega}\right)\right|^{2} \\
& =\sigma_{w}^{2} \frac{1}{1-\cos (\omega)+1 / 4} \\
& =\frac{\sigma_{w}^{2}}{5 / 4-\cos \omega} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\phi_{x x}[n] & =\phi_{w w}[n] * h[n] * h[-n] \\
& =\sigma_{w}^{2}\left(\left(\frac{1}{2}\right)^{n} u[n] *\left(\frac{1}{2}\right)^{-n} u[-n]\right) \\
& =\frac{4}{3} \sigma_{w}^{2}\left(\frac{1}{2}\right)^{|n|} .
\end{aligned}
$$

