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In the last lecture we studied various forms of filter realizations. Today we will take one 
step back, focusing our attention on determining the actual transfer functions to be realized. 
Given specifications of the desired properties of the system, we approximate the specifications 
using a causal discrete time system. In this lecture, we will show how IIR systems can be 
approximated by rational functions of z. Next time we will look at FIR system approximation 
using polynomials of z. 

So far, we have tended to make reference only to ideal filters. In practical designs, ideal sys
tems can not be realized exactly, since the impulse responses are infinitely long and non-causal. 
The idea is to approximate the desired frequency response within certain error tolerances. As 
such, specifications are usually given as tolerance levels in different frequency bands in the range 
0 ≤ ω ≤ π. OSB Figure 7.2 gives a sample tolerance scheme. The transition band is a “don’t 
care” region in which the filter gain can be any finite value. Notice that no requirements have 
been specified for the phase response of the system. Typical filter design procedures focus only 
on magnitude approximation: 

Hideal(e
jω) = |H (ejω) ejθ(ω) |Heff(ejω) Hideal(ejω)| = H (ejω) .| → | ≈ | | | 

Nonetheless, specifications can involve both magnitude and phase (or group delay). Such gen
eralized approximation is a harder problem, but may be desired in specific applications. In 
particular, integer or fractional delays can only be achieved with FIR filters. 

Most of our following discussions will be phrased for piecewise constant LPF’s. Keep in 
mind, however, that much applies more generally, since specific transformations can convert 
LPF’s to HP, BP, or notch filters. 

IIR vs. FIR 

Given a set of specifications, first we need to decide if the desired filter should be IIR or FIR. 
The following table summarizes different factors that could be considered when making this 
decision: 
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IIR Filters FIR Filters 
Phase difficult to control, no particular linear phase always possible 
(grp delay) techniques available 
Stability can be unstable, always stable, 

can have limit cycles no limit cycles 
Order less more 
History derived from analog filters no analog history 
Others polyphase implementation possible 

can always be made causal 

The only way to achieve integer or fractional constant delays is by using FIR filters. • 

Limit cycles are instability of a particular type due to quantization, which is severely • 
non-linear. 

The number of arithmetic operations needed per unit time is directly related to filter • 
order. #MAD stands for number of multiplications and additions. When using this as a 
criterion for comparing different filters, one should pay attention to whether the #MAD 
is measured per input sample, per output sample, or per unit time (clock cycle). It is 
possible that an IIR of lower order actually requires more #MAD than an FIR of higher 
order, because FIR filters may be implemented using polyphase structures. 

Different conventions exist for specifying magnitude responses for IIR and FIR filters. • 
In particular, IIR filter specs are normalized to [1 − Δ1, 1](dB) in the passband, and 
[−∞, Δ2](dB) in the stopband; FIR filter specs are normalized to between 1 ± δ1 within 
the passband, and ±δ2 in the stopband, where δ1, δ2 are given as decimals. 

IIR Filter Design 

Historically, digital IIR filters have been derived from their analog counterparts. There are 
several common types of analog filters: Butterworth which have maximally flat passbands in 
filters of the same order, Chebyshev type I which are equiripple in the passband, Chebyshev 
type II which are equiripple in the stopband, and Elliptic filters which are equiripple in both the 
passband and the stopband. The digital version of these can be obtained from analog designs 
through the bilinear transformation, discussed in detail in OSB Sections 7.1.2 and 7.1.3. 

In short, the bilinear transformation is an algebraic mapping from the continuous frequency 
variable s to the discrete frequency variable z such that the imaginary axis in the s-plane 
corresponds to one revolution of the unit circle in the z-plane: 

1 − z−1 2 ω Ω tan ω/2 
s → 

1 + z−1 ⇒ jΩ = j tan 
2 

,
T Ωc 

→ 
tan ωc/2 

π in the digital frequency domain corresponds to infinity in the analog frequency domain. Note 
that the bilinear transformation is really only appropriate in mapping filters which approximate 
piecewise constant filters. 
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Butterworth Filters 

Two design parameters: order of the filter N , cutoff frequency ωc. The squared magnitude • 
response of a Butterworth filter has the following form: 

12 =|HBW (ejω)|
1 + 

� 
tan (ω/2) 

�2N 

tan (ωc/2) 

The tan function arises here because of the bilinear transformation. In the analog case, 
the transfer function is in the form of 1/1 + ( Ω )2N . See Appendix B.1 of OSB for analog Ωc 

Butterworth filter design techniques. 

The magnitude response of a Butterworth filter decreases monotonically with frequency. • 
The order of the system can be estimated by examining the desired filter gain at the 
cut-off frequency. 

Integer round up may be required in estimating the order of the system. Specs are • 
therefore often exceeded at the passband and stopband edges. In addition, the specs 
are often much exceeded in the stopband, with attenuation approaching zero (−∞dB) as 
frequency approaches π. This is because all zeros of the system are located at z = −1. 
Since the gain diminishes quickly as frequency increases. It is possible that a lower order 
filter exists such that it satisfies the given specifications, but does not exceed them as 
greatly as the Butterworth design. 

The following sets of figures are examples of Butterworth filter design. For an additional • 
example, see OSB Example 7.4. 
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Direct form implementation of a Butterworth filter may cause instability because of coef• 
ficient quantization. The poles may move to the outside of the unit circle, and the zeros 
may spread around z = −1 as shown in the next figure. A solution is to use a cascade 
structure of first and second order systems, with zeros and poles grouped into complex 
conjugate pairs. Furthermore, since all of the zeros are located at z = −1, the numerator 
of the transfer function is (1 + z−1)N . No multiplication is actually needed to implement 
the zeros, because this is equivalent to the cascade of N “delay and add” operations. 

Chebyshev Filters 

Type I 
12 =|HCH(ejω)| � 

tan (ω/2) 
�

1 + �2V 2 
N tan (ωc/2) 

Three design parameters: order N , PB cut-off frequency ωc, allowed PB ripple � (ie. the • 
maximum allowable passband gain is 1, and the minimum allowable passband gain is 
(1 − �)). 

VN (x) = cos(N cos−1 x) is the N th-order chebyshev polynomial. Here we take the con• 
vention that cos−1 x becomes the inverse hyperbolic cosine and is imaginary if x > 1.| | 
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examples of lower order Chebyshev polynomials are:

V0(x) = 1 V1(x) = x

V2(x) = cos(2 cos−1 x) = 2 cos2(cos−1 x)− 1 = 2x2 − 1

Appendix B.2 of OSB for recurrence formulas for deriving Chebyshev polynomials.

in the passband, but decreases monotonically in the stopband.

to Butterworth filters, all zeros of a Chebyshev type I filter are located at z = −1.
wing is a design example:

Some 

Equiripple 

Similar 
Follo 

See 

• 

• 

Type II 

|HCH (ejω) 2 1 � 
tan (ω/2) 

��−1| = 
1 + 

�
�2V 2 

N tan (ωc/2) 

Monotonic in the passband; equiripple in the stopband. • 

For a given set of specifications, the Chebyshev type I and Chebyshev type II design • 
methods yield the same order. 
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wn in the figures below, poles are distributed around z = 1, similar to Butterworth
while zeros are arrayed on the unit circle at the stopband frequencies. Because

are not all located at z = −1, more multiplications are required in comparison to
yshev type I designs. OSB Example 7.5 compares Chebyshev type I and II filters in
detail.

•

designs, 
zeros 
Cheb 
more 

As sho 

In both of the Chebyshev design methods, having a monotonic behavior in either the • 
passband or the stopband suggests a lower order system might exist such that it satisfies 
the given set of specifications, but varies with equal ripple in both the passband and the 
stopband. 

Elliptic Filters 

Four degrees of freedom: PB ripple, SB ripple, order, passband edge. • 

Order of the system controls the transition bandwidth. • 

Equiripple in both the passband and the stopband. • 

Elliptic filters are the lowest order rational function approximation to a given set of • 
magnitude specifications. All IIR filter designs we have discussed so far give nonlinear 
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thus non-constant group delays. The greatest deviation from constant group delay
in all cases at either the edge of the passband, or within the transition band. In
the Chebyshev type II approximation gives the smallest delay in the passband,
widest region of the passband over which the delay is approximately constant.

er, if constant group delay is not required, the elliptic approximation gives the
order system function.

are some sample elliptic filter designs. Also see OSB Example 7.6.•


phases, 

general, 
occurs 

and the 
Howev 
lowest 

Following 
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