Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.341: Discrete-Time Signal Processing

Fall 2005

Solutions for Problem Set 3

Issued: Tuesday, September 272005.

Problem 3.1

No, it is not necessarily causal. As a counterexample consider the case of a non-integer delay such as $H\left(e^{j \omega}\right)=e^{-j \frac{\omega}{2}}$, where $\tau(\omega)=\frac{1}{2}$ for all ω but the corresponding impulse response $h[n]$ is certainly noncausal.

Problem 3.2

(a) For odd $n, x[n]=0$ and $R_{x x}[n, m]=0$. For even n and odd $m, x[n+m]=0$ and again $R_{x x}[n, m]=0$. When both n and m are even: $\mathcal{E}[x[n] x[n+m]]=\mathcal{E}\left[w\left[\frac{n}{2}\right] w\left[\frac{n+m}{2}\right]\right]=\sigma_{w}^{2} \delta[m]$. $x[n]$ is not WSS.
(b)

$$
\begin{aligned}
R_{y y}[n, m] & =\mathcal{E}\left[\left(\sum_{k_{1}^{\prime}=-\infty}^{\infty} x\left[k_{1}^{\prime}\right] h\left[n-k_{1}^{\prime}\right]\right)\left(\sum_{k_{2}^{\prime}=-\infty}^{\infty} x\left[k_{2}^{\prime}\right] h\left[n+m-k_{2}^{\prime}\right]\right)\right] \\
& =\mathcal{E}\left[\left(\sum_{k_{1}=-\infty}^{\infty} x\left[2 k_{1}\right] h\left[n-2 k_{1}\right]\right)\left(\sum_{k_{2}=-\infty}^{\infty} x\left[2 k_{2}\right] h\left[n+m-2 k_{2}\right]\right)\right] \\
& =\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} h\left[n-2 k_{1}\right] h\left[n+m-2 k_{2}\right] \mathcal{E}\left[x\left[2 k_{2}\right] x\left[2 k_{1}\right]\right] \\
& =\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} h\left[n-2 k_{1}\right] h\left[n+m-2 k_{2}\right] \sigma_{w}^{2} \delta\left[k_{2}-k_{1}\right] \\
& =\sigma_{w}^{2} \sum_{k_{1}=-\infty}^{\infty} h\left[n-2 k_{1}\right] h\left[n+m-2 k_{1}\right] \\
& =\sigma_{w}^{2} \sum_{k=-\infty}^{\infty} h[-2 k] h[m-2 k]
\end{aligned}
$$

Where we made the substitution $k=k_{1}-\frac{n}{2}$ for the last step.
(c) $\mathcal{E}[d[n]]=\mathcal{E}[y[2 n]]=\mathcal{E}\left[\sum_{k=-\infty}^{\infty} x[k] h[2 n-k]\right]=\sum_{k=-\infty}^{\infty} \mathcal{E}[x[k]] h[2 n-k]=0$, so the mean value of $d[n]$ is independent of the time index n.

Since $R_{d d}[n, m]=R_{y y}[2 n, 2 m]$ we need to examine $R_{y y}[2 n, 2 m]$ for the case where both n and m are even. Our answer in (b) does not depend on n, so $d[n]$ will be wide sense stationary as long as the sum over k converges. It is enough to require that: $\sum_{k=-\infty}^{\infty}|h[2 k]|^{2}<\infty$

Problem 3.3

OSB Problem 4.47
(a)

$$
\begin{aligned}
\phi_{x x}[m] & =E\left(x[n] x^{*}[n+m]\right) \\
& =E\left[x_{c}(n T) x_{c}^{*}(n T+m T)\right] \\
& =\phi_{x_{c} x_{c}}(m T)
\end{aligned}
$$

(b) Since $\phi_{x x}[m]$ is samples of $\phi_{x_{c} x_{c}}(\tau)$;

$$
P_{x x}\left(e^{j \omega}\right)=\frac{1}{T} \sum_{k=-\infty}^{+\infty} P_{x_{c} x_{c}}\left(\frac{\omega}{T}+\frac{2 \pi k}{T}\right)
$$

(c) If $P_{x_{c} x_{c}}(\Omega)=0$, for $|\Omega| \geq \pi / T$.

Problem 3.4
(a) For uniform distribution:

$$
\begin{array}{ll}
\mathcal{E}(e[n]) & =\int_{-\Delta / 2}^{\Delta / 2} e \frac{1}{\Delta} d e=0 \\
\sigma_{e}^{2} & =\mathcal{E}\left(e^{2}[n]\right)=\int_{-\Delta / 2}^{\Delta / 2} e^{2} \frac{1}{\Delta} d e=\frac{\Delta^{2}}{12} \\
\mathcal{E}(e[n] e[n+m]) & =\mathcal{E}\left(e^{2}[n]\right) \delta[m]=\frac{\Delta^{2}}{12} \delta[m]
\end{array}
$$

(b)

$$
\sigma_{x}^{2} / \sigma_{e}^{2}=12 \sigma_{x}^{2} / \Delta^{2}
$$

(c) For given filter, we have

$$
h[n]=\sum_{k=0}^{\infty} a^{2 k} \delta[n-2 k] .
$$

Thus,

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =1 /\left(1-a^{2} e^{-2 j \omega}\right) \\
\Phi_{e}\left(e^{j \omega}\right) & =\frac{\Delta^{2}}{12} \\
\Phi_{y_{e} y_{e}}\left(e^{j \omega}\right) & =\Phi_{e}\left(e^{j \omega}\right)\left|H\left(e^{j \omega}\right)\right|^{2} \\
& =\frac{\Delta^{2}}{12\left|1-a^{2} e^{-2 j \omega}\right|^{2}} \\
& =\frac{\Delta^{2}}{12\left(1+a^{4}-2 a^{2} \cos 2 \omega\right)} \\
& =\frac{\Delta^{2}}{12\left(1-a^{2} e^{-2 j \omega}\right)\left(1-a^{2} e^{2 j \omega}\right)} \\
\phi_{y_{e} y_{e}}[n] & =h[n] * h[-n] \\
& =\frac{\Delta^{2}}{12\left(1-a^{4}\right)} a^{2|n|} \text { for even } n, 0 \text { for odd } n \\
\sigma_{y_{e}}^{2} & =\phi y_{e} y_{e}[0]=\sigma_{e}^{2} \sum_{k=-\infty}^{\infty} h^{2}[k]=\frac{\Delta^{2}}{12\left(1-a^{4}\right)}
\end{aligned}
$$

The variance of $x[n]$ is also scaled by the the same factor, so the SNR at the output is still $12 \sigma_{x}^{2} / \Delta^{2}$.

Problem 3.5

(a) Since this is an LTI model, we can suppress e to find the contribution that x makes on y. Writing node equations:

$$
\begin{aligned}
D_{1}(z) & =X(z)-Y(z) \\
D_{2}(z) & =H_{1}(z) D_{1}(z)-Y(z) \\
Y(z) & =H_{2}(z) D_{2}(z)
\end{aligned}
$$

These can be solved by substitution to yield:

$$
\frac{Y(z)}{X(z)}=z^{-1}
$$

Similarly, we can suppress x to find the contribution that e makes on y. Writing node equations:

$$
\begin{aligned}
D_{2}(z) & =-H_{1}(z) Y(z)-Y(z) \\
Y(z) & =H_{2}(z) D_{2}(z)+E(z)
\end{aligned}
$$

These can be solved to yield:

$$
\frac{Y(z)}{E(z)}=\left(1-z^{-1}\right)^{2}
$$

Therefore,

$$
Y(z)=z^{-1} X(z)+\left(1-z^{-1}\right)^{2} E(z)
$$

The inverse transform is: $y[n]=x[n-1]+f[n]$, where $f[n]=e[n]-2 e[n-1]+e[n-2]$.
(b)

$$
\begin{aligned}
P_{f f}\left(e^{j \omega}\right) & =\left|H_{e y}\left(e^{j \omega}\right)\right|^{2} P_{e e}\left(e^{j \omega}\right) \\
& =\sigma_{e}^{2}\left|\left(1-e^{-j \omega}\right)^{2}\right|^{2} \\
& =\sigma_{e}^{2}\left(1-e^{-j \omega}\right)^{2}\left(1-e^{j \omega}\right)^{2} \\
& =\sigma_{e}^{2}(2-2 \cos (\omega))^{2} \\
& =\sigma_{e}^{2}\left(4 \sin ^{2}\left(\frac{\omega}{2}\right)\right)^{2} \\
& =16 \sigma_{e}^{2} \sin ^{4}\left(\frac{\omega}{2}\right) \\
\sigma_{f}^{2}=\phi_{f f}[0] & =\frac{1}{2 \pi} \int_{\omega=-\pi}^{\pi} P_{f f}\left(e^{j \omega}\right) d \omega \\
& =\frac{1}{2 \pi} \int_{\omega=-\pi}^{\pi} 16 \sigma_{e}^{2} \sin ^{4}\left(\frac{\omega}{2}\right) d \omega \\
& =6 \sigma_{e}^{2}
\end{aligned}
$$

Alternatively, we could have found the total noise power as follows:
The total noise power σ_{f}^{2} is the autocorrelation of $f[n]$ evaluated at 0 :

$$
\begin{aligned}
\sigma_{f}^{2} & =E\left[(e[n]-2 e[n-1]+e[n-2])^{2}\right] \\
& =E\left[e^{2}[n]\right]+E\left[(-2)^{2} e^{2}[n-1]\right]+E\left[e^{2}[n-2]\right] \\
& =6 \sigma_{e}^{2},
\end{aligned}
$$

where we have used linearity of expectations, and the fact that since $e[n]$ is white, $E[e[n] e[n-$ $k]]=0$ for $k \neq 0$.

(c) Since $X\left(e^{j \omega}\right)$ is bandlimited between $\pm \pi / M$, when $y[n]$ is passed through $H_{3}\left(e^{j \omega}\right)$ all of the information in $X\left(e^{j \omega}\right)$ is preserved, so $w[n]=x[n-1]+g[n]$, where $g[n]$ is the contribution from the noise. Since the noise power spectral density was shaped to be very low for low frequencies, and high frequencies are cut off by $H_{3}\left(e^{j \omega}\right)$, the variance of $g[n]$ is small, as explored below.
(d)

$$
\begin{aligned}
\sigma_{g}^{2}=\phi_{g g}[0] & =\frac{1}{2 \pi} \int_{\omega=-\pi / M}^{\pi / M} P_{g g}\left(e^{j \omega}\right) d \omega \\
& =\frac{1}{2 \pi} \int_{\omega=-\pi / M}^{\pi / M} 16 \sigma_{e}^{2} \sin ^{4}\left(\frac{\omega}{2}\right) d \omega \\
& \approx \frac{1}{2 \pi} \int_{\omega=-\pi / M}^{\pi / M} \sigma_{e}^{2} \omega^{4} d \omega \\
& =\frac{\sigma_{e}^{2} \pi^{4}}{5 M^{5}}
\end{aligned}
$$

(e) $X(j \Omega)$ must be bandlimited between $\pm \pi /(M T) . v[n]=x_{c}((M n-1) T)+q[n] \cdot \sigma_{q}^{2}=\sigma_{g}^{2}$. The power spectrum of the noise at the output is $P_{q q}\left(e^{j \omega}\right)=\frac{1}{M} P_{g g}\left(e^{j \frac{\omega}{M}}\right)=(16 / M) \sigma_{e}^{2} \sin ^{4}\left(\frac{\omega}{2 M}\right)$. The plot below uses an example of $M=4$:

