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Problem 7.1

(a) The normal (Yule-Walker) equations are:

φs[i] =
2

∑

k=1

akφs[i − k], i = 1, 2,

or in matrix form:
[

φs[0] φs[1]
φs[1] φs[0]

] [

a1

a2

]

=

[

φs[1]
φs[2]

]

.

(b) Let s1[n] = (1
3)nu[n] and s2[n] = (−1

2)nu[n]. We calculate the following auto- and cross-
correlations for m > 0,

φs1 [m] =
∞

∑

n=−∞

s1[n + m]s1[n] =
9

8

(

1

3

)m

φs2 [m] =
∞

∑

n=−∞

s2[n + m]s2[n] =
4

3

(

−
1

2

)m

φs1s2 [m] =
∞

∑

n=−∞

s1[n + m]s2[n] =
6

7

(

1

3

)m

φs2s1 [m] =
∞

∑

n=−∞

s2[n + m]s1[n] =
6

7

(

−
1

2

)m

.

Since
φs[m] = φs1 [m] + φs2 [m] + φs1s2 [m] + φs2s1 [m]

and φs[m] is an even function of m, we sum the four correlations and replace m by |m|:

φs[m] =
111

56

(

1

3

)|m|

+
46

21

(

−
1

2

)|m|

.

Note that the cross-correlations φs1s2 [m] and φs2s1 [m] by themselves are not even.

So φs[0] = 4.17, φs[1] = −.4345 and φs[2] = .7678.
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(c) Substituting the values of φs[i] into the normal equations and solving for the ai’s results
in a1 = −0.0859, a2 = .1751.

(d) The normal (Yule-Walker) equations are:

φs[i] =
3

∑

k=1

akφs[i − k], i = 1, 2, 3,

or in matrix form:




φs[0] φs[1] φs[2]
φs[1] φs[0] φs[1]
φs[2] φs[1] φs[0]









a1

a2

a3



 =





φs[1]
φs[2]
φs[3]



 .

(e) φs[3] = −.2004.

(f) Substituting the values of φs[i] into the normal equations and solving for the ai’s results
in a1 = −0.0833, a2 = 0.1738, a3 = −0.0146.

(g) Yes. The signal s[n] is NOT the impulse response of an all-pole filter. Increasing the
order will in general update all previous coefficients in an attempt to model s[n] more
accurately.

(h) In problem 6.7 s[n] was the impulse response of a two-pole system, which we could model
perfectly using a two-pole model. Increasing the order beyond p = 2 achieves nothing. In
this problem s[n] does not arise from an all-pole system, so it is not generally possible to
perfectly model s[n] using only poles. Nevertheless, increasing the order of the all-pole
model will yield a closer and closer approximation.

(i) The difference equation for which the impulse response is s[n] is:

s[n] = −
1

6
s[n − 1] +

1

6
s[n − 2] + 2δ[n] +

1

6
δ[n − 1].

For n ≥ 2 the impulses are zero:

s[n] = −
1

6
s[n − 1] +

1

6
s[n − 2].

Thus the linear prediction coefficients are a1 = −1/6, a2 = 1/6.
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Problem 7.2 (OSB 8.31)

We re-write the desired samples of X(z) in terms of the DFT of a second sequence x1[n].
x[n] is only non-zero for 0 ≤ n ≤ 9:

X(z) =
9

∑

n=0

x[n]z−n

X(z) |z=0.5ej[(2πk/10)+(π/10)] =
9

∑

n=0

x[n]
(

0.5ej[(2πk/10)+(π/10)]
)−n

=
9

∑

n=0

x[n]
(

0.5ejπ/10
)−n

e−j(2π/10)kn

=
9

∑

n=0

x1[n]e−j(2π/10)kn

= X1[k], k = 0, 1, . . . , 9

where we have defined x1[n] =
(

2e−jπ/10
)n

x[n] and we recognize the second last line as the
10-point DFT of x1[n].

Thus x1[n] =
(

2e−jπ/10
)n

x[n].

Problem 7.3 (OSB 8.32)

Answer: (c)

Since y[n] is x[n] expanded by 2, the DTFT Y (ejω) is equal to X(e2jω), i.e. X(ejω) with
the frequency axis compressed by a factor of 2. The 16-point DFT Y [k] samples Y (ejω) at
frequencies ω = 2πk

16 , k = 0, 1, . . . , 15, which is equivalent to sampling X(ejω) at frequencies

ω = 2πk
8 , k = 0, 1, . . . , 15. But since X(ejω) is periodic with period 2π, the last eight samples

are the same as the first eight, which in turn are equal to the 8-point DFT X[k]. In other
words, Y [k] samples X(ejω) from 0 to 4π instead of from 0 to 2π. Therefore Y [k] is equal to
X[k] repeated back-to-back.
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Problem 7.4 (OSB 8.37)

• For g1[n], choose H7[k].

We can think of this as a time reversal followed by a shift by −N + 1.

G1[k] =
N−1
∑

i=0

g1[i]W
ik
N k = 0, · · · , N − 1

=

N−1
∑

i=0

x[N − 1 − i]W ik
N

=
N−1
∑

j=0

x[j]W
k(N−1−j)
N

= W
k(N−1)
N

N−1
∑

j=0

x[j]W
(−k)j
N

= W−k
N X[((−k))N ]

= ej2πk/NX(e−j2πk/N )

• For g2[n], choose H8[k].

This is modulation in time by (−1)n = ejπn, or a shift in the frequency domain by π.

G2[k] =
N−1
∑

i=0

g2[i]W
ik
N k = 0, · · · , N − 1

=

N−1
∑

i=0

(−1)ix[i]W ik
N

=
N−1
∑

i=0

x[i]W
i(k+N/2)
N

= X[((k + N/2))N ]

= X(ej(2π/N)(k+N/2))
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• For g3[n], choose H3[k].

We can interpret the DFT X[k] as the Fourier series coefficients of x̃[n], the periodic
replication of x[n] with period N . Given this interpretation, the DFT G3[k] is also equal
to the Fourier series of x̃[n], but considered as having a period of 2N . However, since x̃[n]
has a fundamental period of N , the even-indexed coefficients of the length 2N Fourier
series will correspond to the length N Fourier series coefficients (i.e. X[k]), while the
odd-indexed coefficients will be zero because they are not necessary.

G3[k] =
2N−1
∑

i=0

g3[i]W
ik
2N k = 0, · · · , 2N − 1

=
N−1
∑

i=0

x[i]W ik
2N +

2N−1
∑

i=N

x[i − N ]W ik
2N

=
N−1
∑

i=0

x[i](W ik
2N + W

(i+N)k
2N )

=
N−1
∑

i=0

x[i]W ik
2N (1 + WNk

2N )

=

N−1
∑

i=0

x[i]W ik
2N (1 + (−1)k)

= X(ej2πk/2N )(1 + (−1)k)

=

{

2X(ej2πk/2N ), k even
0. k odd

• For g4[n], choose H6[k].

The DFT of g4[n] is equal to the DFS of x̃[n], the periodic replication of x[n] with a
period of N/2. In other words, g4[n] is x[n] aliased in time. The DFS of x̃[n] is in turn
equal to samples of X(ejω) spaced by 2π

N/2 = 4π
N .
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G4[k] =

N/2−1
∑

i=0

g4[i]W
ik
N/2 k = 0, · · · , N/2 − 1

=

N/2−1
∑

i=0

(x[i] + x[i + N/2])W ik
N/2

=

N/2−1
∑

i=0

x[i]W ik
N/2 +

N/2−1
∑

i=0

x[i + N/2]W ik
N/2

=

N/2−1
∑

i=0

x[i]W ik
N/2 +

N/2−1
∑

i=0

x[i + N/2]W
k(i+N/2)
N/2

=

N/2−1
∑

i=0

x[i]W ik
N/2 +

N−1
∑

j=N/2

x[j])W jk
N/2

=

N−1
∑

i=0

x[i]W ik
N/2

=
N−1
∑

i=0

x[i](e−j(4π/N)ik)

= X(ej4πk/N )

• For g5[n], choose H2[k].

We are increasing the length of the signal by zero padding. Thus, we are taking more
closely spaced samples of X(ejω).

G5[k] =
2N−1
∑

i=0

g5[i]W
ik
2N k = 0, · · · , 2N − 1

=
N−1
∑

i=0

x[i]W ik
2N

=
N−1
∑

i=0

x[i]W
i(k/2)
N

= X(ej2π(k/2)/N )

= X(ej2πk/(2N))
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• For g6[n], choose H1[k].

We are expanding x[n] by 2 to form g6[n]. The DTFT of g6[n] is equal to X(e2jω), i.e.
X(ejω) with the frequency axis compressed by 2. The 2N values of G6[k] sample two
periods of X(ejω), so the last N samples are equal to the first N . Moreover, the first N
samples are the same as those in X[k]. Thus G6[k] contains the same frequency samples
at ω = 2πk

N , but now k ranges from 0 to 2N − 1.

G6[k] =
2N−1
∑

i=0

g6[i]W
ik
2N k = 0, · · · , 2N − 1

=
N−1
∑

i=0

g[2i]W 2ik
2N +

N−1
∑

i=0

g[2i + 1]W
(2i+1)k
2N

=
N−1
∑

i=0

x[i]W ik
N + 0

= X(ej2πk/N )

• For g7[n], choose H5[k].

We are decimating x[n] by 2, so X(ejω) is vertically scaled by 1
2 , horizontally stretched

by 2, and replicated once. We then obtain samples of the resulting DTFT at frequencies
ω = 2π

N/2 .

G7[k] =

N/2−1
∑

i=0

g7[i]W
ik
N/2 k = 0, . . . , N/2 − 1

=

N/2−1
∑

i=0

x[2i]W ik
N/2

=

N/2−1
∑

i=0

x[2i]W
(2i)k
N

=
N−1
∑

i=0, i even

x[i]W ik
N

=
N−1
∑

i=0

1

2

(

x[i] + (−1)ix[i]
)

W ik
N

=
1

2
{X[k] + X[((k + N/2))N ]}

= 0.5
{

X(ej2πk/N ) + X(ej2π(k+N/2)/N )
}
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Problem 7.5 (OSB 8.46)

In general, (i) holds if the periodic replication of xi[n] is even symmetric about n = 0; (ii)
holds if xi[n] has some point of symmetry; (iii) holds if the periodic replication of xi[n] has
some point of symmetry. Note the subtle difference between (ii) and (iii).

• For x1[n]:

X1[k] = 3(1 + W 4k
5 ) + 1(W k

5 + W 3k
5 ) + 2(W 2k

5 )

= 2W 2k
5 {3 cos (2k(2π/5)) + 1 cos (k(2π/5)) + 1}

X1(e
jω) = 2e−j2ω{3 cos (2ω) + cos ω + 1}

(i) No, X1[k] is not real for all k.

(ii) Yes, X1(e
jω) has generalized linear phase.

(iii) Yes.

• For x2[n]:

X2(e
jω) = 3 + 2e−j2.5ω{1 cos (1.5ω) + 2 cos (0.5ω)}

X2[k] = 3 + 2W 2.5k
5 {cos (1.5k(2π/5)) + 2 cos (0.5k(2π/5))}

= 3 + 2(−1)k{1 cos (1.5k(2π/5)) + 2 cos (0.5k(2π/5))}

(i) Yes.

(ii) No.

(iii) Yes.

• For x3[n]:

X3(e
jω) = 1 + 2e−j2ω{2 cos (2ω) + 1 cos (1ω) + 1}

X3[k] = 1 + 2W 2k
5 {2 cos (2k(2π/5)) + 1 cos (k(2π/5)) + 1}

(i) No.

(ii) No.

(iii) No.
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Problem 7.6 (OSB 8.59)

We want to compute Rs[k] = R(ej2πk/128), the DTFT of r[n] sampled at 128 equally spaced
frequencies.

Both x[n] and y[n] are signals of length 256, so their linear convolution r[n] has length
511. If we had r[n], we could calculate Rs[k] by time-aliasing r[n] to 128 samples (periodically
replicating r[n] with a period of 128 and extracting one period) and taking the 128-point
DFT (module V). However, a linear convolution module is not available, so an alternative way
of time-aliasing r[n] is through circular convolution of x[n] and y[n]. x[n] and y[n] can be
circularly convolved by periodically replicating both signals with a period of 128 using module
I, performing periodic convolution using module III, and extracting one period of the periodic
convolution. The result of this circular convolution is equal to r[n] time-aliased to 128 samples.
However, since the 128-point DFT module (module V) only considers its input between n = 0
and n = 127, the explicit extraction of one period is not necessary.

The implementation just described is pictured below. The total cost is 110 units.

I

I

III V

x[n]

y[n]

Rs[k]

Problem 7.7

(a) Assuming that the overlap-save method is correctly implemented, the output y[n] of S
can be represented as the linear convolution y[n] = x[n]∗h[n]. The impulse response h[n]
corresponding to H[k] is a finite sequence of length 256. However, an ideal frequency-
selective filter has an infinite impulse response. Therefore, S cannot be an ideal frequency-
selective filter.

(b) The impulse response h[n] of S is the IDFT of H[k]. Since H[k] is real and even in the
circular sense (H[k] = H[((−k))256]), h[n] is real.
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(c)

h[n] =
1

256

255
∑

k=0

H[k]W−kn
256 0 ≤ n ≤ 255

=
1

256

31
∑

k=0

W−kn
256 +

1

256

255
∑

k=225

W
−n(k−256)
256

=
1

256

31
∑

k=0

W−kn
256 +

1

256

−1
∑

k=−31

W−kn
256

=
1

256

31
∑

k=−31

W−kn
256

=
1

256

W 31n
256 − W−32n

256

1 − W−n
256

=
1

256

W−0.5n
256

(

W 31.5n
256 − W−31.5n

256

)

W−0.5n
256

(

W 0.5n
256 − W−0.5n

256

)

=
sin 63πn

256

256 sin πn
256

In sum,

h[n] =



















sin
63πn

256

256 sin
πn

256

0 ≤ n ≤ 255

0 otherwise


