Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.341: Discrete-Time Signal Processing

Fall 2005

Problem Set 7 Solutions

Issued: Tuesday, November 1, 2005

Problem 7.1

(a) The normal (Yule-Walker) equations are:

$$
\phi_{s}[i]=\sum_{k=1}^{2} a_{k} \phi_{s}[i-k], \quad i=1,2,
$$

or in matrix form:

$$
\left[\begin{array}{ll}
\phi_{s}[0] & \phi_{s}[1] \\
\phi_{s}[1] & \phi_{s}[0]
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\phi_{s}[1] \\
\phi_{s}[2]
\end{array}\right] .
$$

(b) Let $s_{1}[n]=\left(\frac{1}{3}\right)^{n} u[n]$ and $s_{2}[n]=\left(-\frac{1}{2}\right)^{n} u[n]$. We calculate the following auto- and crosscorrelations for $m>0$,

$$
\begin{aligned}
& \phi_{s_{1}}[m]=\sum_{n=-\infty}^{\infty} s_{1}[n+m] s_{1}[n]=\frac{9}{8}\left(\frac{1}{3}\right)^{m} \\
& \phi_{s_{2}}[m]=\sum_{n=-\infty}^{\infty} s_{2}[n+m] s_{2}[n]=\frac{4}{3}\left(-\frac{1}{2}\right)^{m} \\
& \phi_{s_{1} s_{2}}[m]=\sum_{n=-\infty}^{\infty} s_{1}[n+m] s_{2}[n]=\frac{6}{7}\left(\frac{1}{3}\right)^{m} \\
& \phi_{s_{2} s_{1}}[m]=\sum_{n=-\infty}^{\infty} s_{2}[n+m] s_{1}[n]=\frac{6}{7}\left(-\frac{1}{2}\right)^{m} .
\end{aligned}
$$

Since

$$
\phi_{s}[m]=\phi_{s_{1}}[m]+\phi_{s_{2}}[m]+\phi_{s_{1} s_{2}}[m]+\phi_{s_{2} s_{1}}[m]
$$

and $\phi_{s}[m]$ is an even function of m, we sum the four correlations and replace m by $|m|$:

$$
\phi_{s}[m]=\frac{111}{56}\left(\frac{1}{3}\right)^{|m|}+\frac{46}{21}\left(-\frac{1}{2}\right)^{|m|} .
$$

Note that the cross-correlations $\phi_{s_{1} s_{2}}[m]$ and $\phi_{s_{2} s_{1}}[m]$ by themselves are not even.
So $\phi_{s}[0]=4.17, \phi_{s}[1]=-.4345$ and $\phi_{s}[2]=.7678$.
(c) Substituting the values of $\phi_{s}[i]$ into the normal equations and solving for the a_{i} 's results in $a_{1}=-0.0859, a_{2}=.1751$.
(d) The normal (Yule-Walker) equations are:

$$
\phi_{s}[i]=\sum_{k=1}^{3} a_{k} \phi_{s}[i-k], \quad i=1,2,3,
$$

or in matrix form:

$$
\left[\begin{array}{lll}
\phi_{s}[0] & \phi_{s}[1] & \phi_{s}[2] \\
\phi_{s}[1] & \phi_{s}[0] & \phi_{s}[1] \\
\phi_{s}[2] & \phi_{s}[1] & \phi_{s}[0]
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
\phi_{s}[1] \\
\phi_{s}[2] \\
\phi_{s}[3]
\end{array}\right] .
$$

(e) $\phi_{s}[3]=-.2004$.
(f) Substituting the values of $\phi_{s}[i]$ into the normal equations and solving for the a_{i} 's results in $a_{1}=-0.0833, a_{2}=0.1738, a_{3}=-0.0146$.
(g) Yes. The signal $s[n]$ is NOT the impulse response of an all-pole filter. Increasing the order will in general update all previous coefficients in an attempt to model $s[n]$ more accurately.
(h) In problem $6.7 s[n]$ was the impulse response of a two-pole system, which we could model perfectly using a two-pole model. Increasing the order beyond $p=2$ achieves nothing. In this problem $s[n]$ does not arise from an all-pole system, so it is not generally possible to perfectly model $s[n]$ using only poles. Nevertheless, increasing the order of the all-pole model will yield a closer and closer approximation.
(i) The difference equation for which the impulse response is $s[n]$ is:

$$
s[n]=-\frac{1}{6} s[n-1]+\frac{1}{6} s[n-2]+2 \delta[n]+\frac{1}{6} \delta[n-1] .
$$

For $n \geq 2$ the impulses are zero:

$$
s[n]=-\frac{1}{6} s[n-1]+\frac{1}{6} s[n-2] .
$$

Thus the linear prediction coefficients are $a_{1}=-1 / 6, a_{2}=1 / 6$.

Problem 7.2 (OSB 8.31)
We re-write the desired samples of $X(z)$ in terms of the DFT of a second sequence $x_{1}[n]$. $x[n]$ is only non-zero for $0 \leq n \leq 9$:

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{9} x[n] z^{-n} \\
\left.X(z)\right|_{z=0.5 e^{j(2 \pi k / 10)+(\pi / 10)]}} & =\sum_{n=0}^{9} x[n]\left(0.5 e^{j[(2 \pi k / 10)+(\pi / 10)]}\right)^{-n} \\
& =\sum_{n=0}^{9} x[n]\left(0.5 e^{j \pi / 10}\right)^{-n} e^{-j(2 \pi / 10) k n} \\
& =\sum_{n=0}^{9} x_{1}[n] e^{-j(2 \pi / 10) k n} \\
& =X_{1}[k], k=0,1, \ldots, 9
\end{aligned}
$$

where we have defined $x_{1}[n]=\left(2 e^{-j \pi / 10}\right)^{n} x[n]$ and we recognize the second last line as the 10 -point DFT of $x_{1}[n]$.

Thus $x_{1}[n]=\left(2 e^{-j \pi / 10}\right)^{n} x[n]$.

Problem 7.3 (OSB 8.32)

Answer: (c)
Since $y[n]$ is $x[n]$ expanded by 2 , the DTFT $Y\left(e^{j \omega}\right)$ is equal to $X\left(e^{2 j \omega}\right)$, i.e. $X\left(e^{j \omega}\right)$ with the frequency axis compressed by a factor of 2 . The 16 -point DFT $Y[k]$ samples $Y\left(e^{j \omega}\right)$ at frequencies $\omega=\frac{2 \pi k}{16}, k=0,1, \ldots, 15$, which is equivalent to sampling $X\left(e^{j \omega}\right)$ at frequencies $\omega=\frac{2 \pi k}{8}, k=0,1, \ldots, 15$. But since $X\left(e^{j \omega}\right)$ is periodic with period 2π, the last eight samples are the same as the first eight, which in turn are equal to the 8 -point DFT $X[k]$. In other words, $Y[k]$ samples $X\left(e^{j \omega}\right)$ from 0 to 4π instead of from 0 to 2π. Therefore $Y[k]$ is equal to $X[k]$ repeated back-to-back.

Problem 7.4 (OSB 8.37)

- For $g_{1}[n]$, choose $H_{7}[k]$.

We can think of this as a time reversal followed by a shift by $-N+1$.

$$
\begin{aligned}
G_{1}[k] & =\sum_{i=0}^{N-1} g_{1}[i] W_{N}^{i k} \quad k=0, \cdots, N-1 \\
& =\sum_{i=0}^{N-1} x[N-1-i] W_{N}^{i k} \\
& =\sum_{j=0}^{N-1} x[j] W_{N}^{k(N-1-j)} \\
& =W_{N}^{k(N-1)} \sum_{j=0}^{N-1} x[j] W_{N}^{(-k) j} \\
& =W_{N}^{-k} X\left[((-k))_{N}\right] \\
& =e^{j 2 \pi k / N} X\left(e^{-j 2 \pi k / N}\right)
\end{aligned}
$$

- For $g_{2}[n]$, choose $H_{8}[k]$.

This is modulation in time by $(-1)^{n}=e^{j \pi n}$, or a shift in the frequency domain by π.

$$
\begin{aligned}
G_{2}[k] & =\sum_{i=0}^{N-1} g_{2}[i] W_{N}^{i k} \quad k=0, \cdots, N-1 \\
& =\sum_{i=0}^{N-1}(-1)^{i} x[i] W_{N}^{i k} \\
& =\sum_{i=0}^{N-1} x[i] W_{N}^{i(k+N / 2)} \\
& =X\left[((k+N / 2))_{N}\right] \\
& =X\left(e^{j(2 \pi / N)(k+N / 2)}\right)
\end{aligned}
$$

- For $g_{3}[n]$, choose $H_{3}[k]$.

We can interpret the DFT $X[k]$ as the Fourier series coefficients of $\tilde{x}[n]$, the periodic replication of $x[n]$ with period N. Given this interpretation, the DFT $G_{3}[k]$ is also equal to the Fourier series of $\tilde{x}[n]$, but considered as having a period of $2 N$. However, since $\tilde{x}[n]$ has a fundamental period of N, the even-indexed coefficients of the length $2 N$ Fourier series will correspond to the length N Fourier series coefficients (i.e. $X[k]$), while the odd-indexed coefficients will be zero because they are not necessary.

$$
\begin{aligned}
G_{3}[k] & =\sum_{i=0}^{2 N-1} g_{3}[i] W_{2 N}^{i k} \quad k=0, \cdots, 2 N-1 \\
& =\sum_{i=0}^{N-1} x[i] W_{2 N}^{i k}+\sum_{i=N}^{2 N-1} x[i-N] W_{2 N}^{i k} \\
& =\sum_{i=0}^{N-1} x[i]\left(W_{2 N}^{i k}+W_{2 N}^{(i+N) k}\right) \\
& =\sum_{i=0}^{N-1} x[i] W_{2 N}^{i k}\left(1+W_{2 N}^{N k}\right) \\
& =\sum_{i=0}^{N-1} x[i] W_{2 N}^{i k}\left(1+(-1)^{k}\right) \\
& =X\left(e^{j 2 \pi k / 2 N}\right)\left(1+(-1)^{k}\right) \\
& = \begin{cases}2 X\left(e^{j 2 \pi k / 2 N}\right), & k \text { even } \\
0 . & k \text { odd }\end{cases}
\end{aligned}
$$

- For $g_{4}[n]$, choose $H_{6}[k]$.

The DFT of $g_{4}[n]$ is equal to the DFS of $\tilde{x}[n]$, the periodic replication of $x[n]$ with a period of $N / 2$. In other words, $g_{4}[n]$ is $x[n]$ aliased in time. The DFS of $\tilde{x}[n]$ is in turn equal to samples of $X\left(e^{j \omega}\right)$ spaced by $\frac{2 \pi}{N / 2}=\frac{4 \pi}{N}$.

$$
\begin{aligned}
G_{4}[k] & =\sum_{i=0}^{N / 2-1} g_{4}[i] W_{N / 2}^{i k} \quad k=0, \cdots, N / 2-1 \\
& =\sum_{i=0}^{N / 2-1}(x[i]+x[i+N / 2]) W_{N / 2}^{i k} \\
& =\sum_{i=0}^{N / 2-1} x[i] W_{N / 2}^{i k}+\sum_{i=0}^{N / 2-1} x[i+N / 2] W_{N / 2}^{i k} \\
& =\sum_{i=0}^{N / 2-1} x[i] W_{N / 2}^{i k}+\sum_{i=0}^{N / 2-1} x[i+N / 2] W_{N / 2}^{k(i+N / 2)} \\
& \left.=\sum_{i=0}^{N / 2-1} x[i] W_{N / 2}^{i k}+\sum_{j=N / 2}^{N-1} x[j]\right) W_{N / 2}^{j k} \\
& =\sum_{i=0}^{N-1} x[i] W_{N / 2}^{i k} \\
& =\sum_{i=0}^{N-1} x[i]\left(e^{-j(4 \pi / N) i k}\right) \\
& =X\left(e^{j 4 \pi k / N}\right)
\end{aligned}
$$

- For $g_{5}[n]$, choose $H_{2}[k]$.

We are increasing the length of the signal by zero padding. Thus, we are taking more closely spaced samples of $X\left(e^{j \omega}\right)$.

$$
\begin{aligned}
G_{5}[k] & =\sum_{i=0}^{2 N-1} g_{5}[i] W_{2 N}^{i k} \quad k=0, \cdots, 2 N-1 \\
& =\sum_{i=0}^{N-1} x[i] W_{2 N}^{i k} \\
& =\sum_{i=0}^{N-1} x[i] W_{N}^{i(k / 2)} \\
& =X\left(e^{j 2 \pi(k / 2) / N}\right) \\
& =X\left(e^{j 2 \pi k /(2 N)}\right)
\end{aligned}
$$

- For $g_{6}[n]$, choose $H_{1}[k]$.

We are expanding $x[n]$ by 2 to form $g_{6}[n]$. The DTFT of $g_{6}[n]$ is equal to $X\left(e^{2 j \omega}\right)$, i.e. $X\left(e^{j \omega}\right)$ with the frequency axis compressed by 2 . The $2 N$ values of $G_{6}[k]$ sample two periods of $X\left(e^{j \omega}\right)$, so the last N samples are equal to the first N. Moreover, the first N samples are the same as those in $X[k]$. Thus $G_{6}[k]$ contains the same frequency samples at $\omega=\frac{2 \pi k}{N}$, but now k ranges from 0 to $2 N-1$.

$$
\begin{aligned}
G_{6}[k] & =\sum_{i=0}^{2 N-1} g_{6}[i] W_{2 N}^{i k} \quad k=0, \cdots, 2 N-1 \\
& =\sum_{i=0}^{N-1} g[2 i] W_{2 N}^{2 i k}+\sum_{i=0}^{N-1} g[2 i+1] W_{2 N}^{(2 i+1) k} \\
& =\sum_{i=0}^{N-1} x[i] W_{N}^{i k}+0 \\
& =X\left(e^{j 2 \pi k / N}\right)
\end{aligned}
$$

- For $g_{7}[n]$, choose $H_{5}[k]$.

We are decimating $x[n]$ by 2 , so $X\left(e^{j \omega}\right)$ is vertically scaled by $\frac{1}{2}$, horizontally stretched by 2 , and replicated once. We then obtain samples of the resulting DTFT at frequencies $\omega=\frac{2 \pi}{N / 2}$.

$$
\begin{aligned}
G_{7}[k] & =\sum_{i=0}^{N / 2-1} g_{7}[i] W_{N / 2}^{i k} \quad k=0, \ldots, N / 2-1 \\
& =\sum_{i=0}^{N / 2-1} x[2 i] W_{N / 2}^{i k} \\
& =\sum_{i=0}^{N / 2-1} x[2 i] W_{N}^{(2 i) k} \\
& =\sum_{i=0, i \text { even }}^{N-1} x[i] W_{N}^{i k} \\
& =\sum_{i=0}^{N-1} \frac{1}{2}\left(x[i]+(-1)^{i} x[i]\right) W_{N}^{i k} \\
& =\frac{1}{2}\left\{X[k]+X\left[((k+N / 2))_{N}\right]\right\} \\
& =0.5\left\{X\left(e^{j 2 \pi k / N}\right)+X\left(e^{j 2 \pi(k+N / 2) / N}\right)\right\}
\end{aligned}
$$

Problem 7.5 (OSB 8.46)

In general, (i) holds if the periodic replication of $x_{i}[n]$ is even symmetric about $n=0$; (ii) holds if $x_{i}[n]$ has some point of symmetry; (iii) holds if the periodic replication of $x_{i}[n]$ has some point of symmetry. Note the subtle difference between (ii) and (iii).

- For $x_{1}[n]$:

$$
\begin{aligned}
X_{1}[k] & =3\left(1+W_{5}^{4 k}\right)+1\left(W_{5}^{k}+W_{5}^{3 k}\right)+2\left(W_{5}^{2 k}\right) \\
& =2 W_{5}^{2 k}\{3 \cos (2 k(2 \pi / 5))+1 \cos (k(2 \pi / 5))+1\} \\
X_{1}\left(e^{j \omega}\right) & =2 e^{-j 2 \omega}\{3 \cos (2 \omega)+\cos \omega+1\}
\end{aligned}
$$

(i) No, $X_{1}[k]$ is not real for all k.
(ii) Yes, $X_{1}\left(e^{j \omega}\right)$ has generalized linear phase.
(iii) Yes.

- For $x_{2}[n]$:

$$
\begin{aligned}
X_{2}\left(e^{j \omega}\right) & =3+2 e^{-j 2.5 \omega}\{1 \cos (1.5 \omega)+2 \cos (0.5 \omega)\} \\
X_{2}[k] & =3+2 W_{5}^{2.5 k}\{\cos (1.5 k(2 \pi / 5))+2 \cos (0.5 k(2 \pi / 5))\} \\
& =3+2(-1)^{k}\{1 \cos (1.5 k(2 \pi / 5))+2 \cos (0.5 k(2 \pi / 5))\}
\end{aligned}
$$

(i) Yes.
(ii) No.
(iii) Yes.

- For $x_{3}[n]$:

$$
\begin{aligned}
X_{3}\left(e^{j \omega}\right) & =1+2 e^{-j 2 \omega}\{2 \cos (2 \omega)+1 \cos (1 \omega)+1\} \\
X_{3}[k] & =1+2 W_{5}^{2 k}\{2 \cos (2 k(2 \pi / 5))+1 \cos (k(2 \pi / 5))+1\}
\end{aligned}
$$

(i) No.
(ii) No.
(iii) No.

Problem 7.6 (OSB 8.59)

We want to compute $R_{s}[k]=R\left(e^{j 2 \pi k / 128}\right)$, the DTFT of $r[n]$ sampled at 128 equally spaced frequencies.

Both $x[n]$ and $y[n]$ are signals of length 256 , so their linear convolution $r[n]$ has length 511. If we had $r[n]$, we could calculate $R_{s}[k]$ by time-aliasing $r[n]$ to 128 samples (periodically replicating $r[n]$ with a period of 128 and extracting one period) and taking the 128 -point DFT (module V). However, a linear convolution module is not available, so an alternative way of time-aliasing $r[n]$ is through circular convolution of $x[n]$ and $y[n] . x[n]$ and $y[n]$ can be circularly convolved by periodically replicating both signals with a period of 128 using module I, performing periodic convolution using module III, and extracting one period of the periodic convolution. The result of this circular convolution is equal to $r[n]$ time-aliased to 128 samples. However, since the 128 -point DFT module (module V) only considers its input between $n=0$ and $n=127$, the explicit extraction of one period is not necessary.

The implementation just described is pictured below. The total cost is 110 units.

Problem 7.7

(a) Assuming that the overlap-save method is correctly implemented, the output $y[n]$ of S can be represented as the linear convolution $y[n]=x[n] * h[n]$. The impulse response $h[n]$ corresponding to $H[k]$ is a finite sequence of length 256 . However, an ideal frequencyselective filter has an infinite impulse response. Therefore, S cannot be an ideal frequencyselective filter.
(b) The impulse response $h[n]$ of S is the IDFT of $H[k]$. Since $H[k]$ is real and even in the circular sense $\left(H[k]=H\left[((-k))_{256}\right]\right), h[n]$ is real.
(c)

$$
\begin{aligned}
h[n] & =\frac{1}{256} \sum_{k=0}^{255} H[k] W_{256}^{-k n} \quad 0 \leq n \leq 255 \\
& =\frac{1}{256} \sum_{k=0}^{31} W_{256}^{-k n}+\frac{1}{256} \sum_{k=225}^{255} W_{256}^{-n(k-256)} \\
& =\frac{1}{256} \sum_{k=0}^{31} W_{256}^{-k n}+\frac{1}{256} \sum_{k=-31}^{-1} W_{256}^{-k n} \\
& =\frac{1}{256} \sum_{k=-31}^{31} W_{256}^{-k n} \\
& =\frac{1}{256} \frac{W_{256}^{31 n}-W_{256}^{-32 n}}{1-W_{256}^{-n}} \\
& =\frac{1}{256} \frac{W_{256}^{-0.5 n}\left(W_{256}^{35 n}-W_{256}^{-31.5 n}\right)}{W_{256}^{-0.5 n}\left(W_{256}^{0.5 n}-W_{256}^{-0.5 n}\right)} \\
& =\frac{\sin \frac{63 \pi n}{256}}{256} \sin \frac{\pi n}{256}
\end{aligned}
$$

In sum,

$$
h[n]= \begin{cases}\frac{\sin \frac{63 \pi n}{256}}{256 \sin \frac{\pi n}{256}} & 0 \leq n \leq 255 \\ 0 & \text { otherwise }\end{cases}
$$

