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Lecture 20 

The Goertzel Algorithm and the Chirp Transform 

Reading: Sections 9.0 - 9.2 and 9.6 in Oppenheim, Schafer & Buck (OSB).


In the previous lecture we discussed a well-known class of algorithms for computing the DFT 
efficiently. While the fast Fourier transform’s various incarnations have gained considerable 
popularity, careful selection of an appropriate algorithm for computing the DFT in practice 
need not be limited to choosing between these so-called “fast” implementations. We’ll there
fore focus in this lecture on two other techniques for computing the DFT: the Goertzel algorithm 
and the chirp transform. 

Before going further, think about the following question: 

Given a signal x[n] with corresponding 8-point DFT X[k], what is the most efficient 
way, in terms of total multiplications required, to compute X[5] from x[n]? 

To start, note that using a radix-2 FFT algorithm isn’t the best choice; judicious application of 
the canonical DFT equation is enough to beat it. Computing X[5] requires roughly 8 log 2 8 = 24 
complex multiplications when employing a radix-2 FFT algorithm, since X[k] for k = 0, 1, . . . , 7 
must first be computed. However, calculating X[5] = 


7 −j(2�/8)5n using OSB Equation n=0 x[n]e 
8.11 requires only 8 complex multiplications and is strikingly simple compared to the radix-2 
FFT algorithms, depicted in OSB Figure 9.10. This example illustrates the point that while 
the FFT algorithms may be useful for a wide class of problems, they are by no means the most 
efficient choice in all situations. 

The Goertzel Algorithm 

We’ll now discuss the Goertzel Algorithm, an efficient method (in terms of multiplications) for 
computing X[k] for a given k. The derivation of the algorithm, which is developed in OSB 
Section 9.2, begins by noting that the DFT can be formulated in terms of a convolution. 
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Specifically, processing a signal x[n] through an LTI filter with impulse response h[n] = W −nk u[n]N 
and evaluating the result, yk[n], at n = N will give the corresponding N -point DFT coefficient 
X[k] = yk [N ]. This LTI filtering process is illustrated below. 

x[n] −� h[n] = W −nk u[n] −� yk[n] = x[n] � W −nk u[n]N N 

Representing the filter by its z-transform, we have 
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the filtering operation can be equivalently performed by the system 
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with the associated flow graph depicted in OSB Figure 9.10. 

Noting that 

1 
H(z) = 

1 − W −k z−1 
N 

2 



= � � , 

� 

� 

� 

�� � � 

2 

−11 − W k 
N z 1 

= 
N z

−1 1 − W−k z−11 − W k 
N 

−11 − W k 
N z 

−21 − 2 cos 2�k z−1 + zN 

the filtering operation can also be equivalently performed by 
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with the associated flow graph depicted in OSB Figure 9.20. 

Since we’re only evaluating the output of this filter at yk[N ], the multiplier −W k need only N 
be used at time n = N . With this in mind, the algorithm requires N real multiplications 
and a single complex multiplication to compute X[k] for a given k. This compares favorably 
to N complex multiplications as required by the canonical DFT equation and approximately 
N log2 N complex multiplications as required by the radix-2 FFT algorithms, when computing 
X[k] for a given k. A final note about the Goertzel algorithm: since it is not restricted to 
computing 


N−1 
x[n]W nk for integer values of k, the algorithm has the convenient property n=0 N 

that it can efficiently compute X(ej�) for arbitrary choice of �. 

The Chirp Transform Algorithm 

The chirp transform algorithm, which is derived in detail in OSB Subsection 9.6.2, computes 
X(ej�) for uniformly-spaced samples of � anywhere along the unit circle, as depicted in OSB 
Figure 9.25. The algorithm therefore computes 


N−1 
x[n]e −j(�0+k��)nX(ej(�0 +k��)) = , k = 0, 1, . . . ,M − 1 ,n=0 

or equivalently, 
N−1 

X(ej�k ) = x[n]e −j�k n , k = 0, 1, . . . ,M − 1, 
n=0 

where 
�k = �0 + k��, k = 0, 1, . . . ,M − 1. 

Defining W = e −j��, this becomes 
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� � 
By defining g[n] = e −j�0nW n

2/2 x[n], the above equation is equivalently represented as 

2/2 g[n] � W −n2/2X(ej�k ) = W n , 

which leads to the block diagram depicted in OSB Figure 9.26. This system isn’t realizable 
as-is, since it is neither causal nor stable. If, however, we restrict ourselves to operating on a 
finite-length causal signal x[n], the system can be implemented, since we’re also only interested 
its output y[n] over a given, finite time interval. There are several possible causal realizations 
of this, and in each case the implementation relies on appropriate bookkeeping. 

There may also be some question as to how implementing X(ej�k ) as in OSB Figure 9.26 could 
be practically useful. Note however that for a given ��, the analysis parameter �0 appears only 
at the first modulator block. As long as the frequency sample spacing �� is fixed, the system 
can therefore be easily adjusted to compute for frequency samples beginning at any point on 
the unit circle. Another advantage of this technique is that it computes DTFT samples using a 
fixed convolution block, a property which is convenient when using discrete-time analog hard
ware, such as charge-coupled devices (CCDs). 
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