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Problem 10.1 

Problem 1, Fall 2004 Final Exam 

We begin by finding an expression for G[k]: 

∞ � 

G[k] = g[n]e
−j2πnk/N = 

∞ � 

x[n]w[n]e −j2πnk/N (1) 
n=−∞ n=−∞ 

Since we’re given that hk[n] = ej2πnk/N , we can solve for vk[m]: 

∞ � ∞ � 

vk[m] = x[m]hk[m − n] = x[m]h0[m − n]ej2π(m−n)k/N (2) 
n=−∞ n=−∞ 

Evaluating (2) for m = 0 gives 

∞ � 

vk[0] = x[n]h0[−n]e −j2πnk/N = G[k] , (3) 
n=−∞ 

and comparing (1) and (3) shows us that w[n] and h0[n] are related by 

w[n] = h0[−n] = 
0.9−n , −M + 1 ≤ n ≤ 0 

0, otherwise 
. 
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Problem 10.2 

Xw[k] is defined as 
255 �

2π kn x[n]0.9−n e −j
256 ,Xw[k] = 

n=0 

which is what we’d like our system to eventually implement. In terms of vk[n] this is 

∞ � ∞ � 

Xw[k] = vk[Nk] = x[n]hk[Nk − n] = x[n]h0[Nk − n]e −jωk(Nk−n). 
n=−∞ n=−∞ 

We can allow the limits of the sum to go from n = 0 to n = 255 if we restrict h0[Nk − n] to be 
possibly nonzero only for Nk −n ≥ 0 and Nk −n ≤ 255, or equivalently, for Nk −255 ≤ n ≤ Nk. 
Since the prototype filter must be causal, Nk − 255 (the lower limit on the filter’s possibly 
nonzero region) must be greater than or equal to 0. Nk can then be judiciously chosen to be 

Nk = 256 ∀k. 

We now have 
255 � 

vk[256] = x[n]h0[256 − n]e −jωk(256−n). 
n=0 

Putting issues with the exponential term aside for the moment, we know we’d like to have 

0.9−n , 0 ≤ n ≤ 255 
0, otherwise 

.h0[256 − n] = 

With a change of variables this becomes


0.9n−256 , 1 ≤ n ≤ 256 
h0[n] = 

0, otherwise 
, 

and so we now have 
255 �

−jωk(256−n)x[n]0.9−n evk[256] = . 
n=0 

We’d still like 
2π

−jωk(256−n) = e −j
256 

kn ,e 

which is satisfied for 
2π 

ωk = − k. 
256 

We now have 

255 � 255 � 255 �
j 2π 

256 
k(256−n) = 

2π 2π 

x[n]0.9−n j2πk −je e kn x[n]0.9−n −je kn x[n]0.9−n evk[256] = 256 256 = . 
n=0 n=0 n=0 



Problem 10.3 

(a) L = 256 and R = 1 

(b) M : (a), ωk: (b), al: (a) 

Problem 10.4 

OSB Problem 10.40, (a) - (d) 

(a) 

∞ � 

X[n, λ) = x[n +
 m]w[m]e −jλm 

m=−∞ 

∞ � 

=

′ 

′ ′ jλn x[m ]w[m − n]e −jλm e
′ m =−∞ 

h0[n]=w[−n] 
= 

∞ �
jλn e (x[m ]e −jλm )h0[n − m ] 

′ 
′ ′ 

′ m =−∞ 

′ x [n]=x[n]e−jλn 

= ejλn x ′ [n] ∗ h0[n] 

Now we show that X[n, λ) is the output of the system of Figure P10.40-1 if h0[n] = w[−n]

holds.


Obviously it is LTI since e−jλn can be treated as constant when λ is fixed.


When x[n] = δ[n], the input to filter h0[n] is still δ[n]. The output of filter h0[n] is

h0[n] = w[−n]. Thus, the impulse response of the equivalent LTI system is:


heq[n] = w[−n]ejλn . 

The frequency response of the equivalent LTI system is 

jω) j(λ−ω)).Heq(e = W (e

(b) Similar to part(a), when x[n] = δ[n], 

s[n] = ho[n] = w[−n] 
jω) −jω)S(e = W (e 
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For typical window sequences w[n], W (ejω) has a lowpass discrete-time Fourier transform. 
Therefore, S(ejω) = W (ej(−ω)) should also have a lowpass discrete-time Fourier transform, 
while Heq(e

jω) = W (ej(λ−ω)) have a bandpass discrete-time Fourier transform. 

(c) Based on conclusion from part (a), 

we have:


y0[n] = X[n, λ0)


y1[n] = X[n, λ1)


· · · 

yi[n] = X[n, λi) 

· · · 

yN−1[n] = X[n, λN−1) 

In total, 

N−1 

y[n] = X[n, λi) 
i=0 

N−1 ∞ � 

= 
i=0 m=−∞ 

x[n + m]w[m]e −jλim 

∞ � N−1 
−jλim e= x[n + m]w[m]


m=−∞ i=0 

Since we assume N ≥ L ≥ R, we can consider only the items when |m| ≤ N . Thus, 

∞ � 

y[n] = x[n + m]w[m]Nδ[m] 
m=−∞ 

= Nx[n]w[0] 

(d) Consider a single channel, 

decimator expander 

x[n] x h
0
[n] R R g

0
[n] x y

k
[n] 

−j λ n j λ n e k e k
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� � � 

� � � � � � 

� � � � � � 

� � � � 

� � � � 

�	 �� � 

In the frequency domain, the input to the decimator is 

jω)X ej(ω+λk) H0(e

so the output of the decimator is 

R−1
1 � 

X 
� 

j((ω−2πl)/R+λk) H0 ej(ω−2πl)/Re
R 

l=0 

The output of the expander is 

R−1
1 � 

X 
� 

j(ω+λk−2πl/R) H0 ej(ω−2πl/R)e
R 

l=0 

The output Yk(e
jω) is then 

R−1 
jω)	 j(ω−2πl/R) H0 ej(ω−λk−2πl/R)Yk(e =

1 � 

G0 ej(ω−λk) X e
R 

l=0 

The overall system output is formed by summing these terms over k. 

N−1 

Y (ejω) = 
� 

Yk(e
jω)


k=0


R−1 N−1


=
1 � � 

G0 ej(ω−λk) X ej(ω−2πl/R) H0 ej(ω−λk−2πl/R)

R 
l=0 k=0 

To cancel the aliasing, we rewrite the equation as follows: 

N−1 
jω)	 j(ω−λk)Y (e = X(ejω)

1 � 

H0 ej(ω−λk) G0 e
R 

k=0 

R−1 N−1 

+	
� 

X 
� 

ej(ω−2πl/R)
� 1 � 

G0 ej(ω−λk) H0 ej(ω−λk−2πl/R)

R 
l=1	 k=0 

Aliasing Component 

Therefore, we require the following relations to be satisfied so that y[n] = x[n]: 

N−1
� � 
j(ω−λk)

� 

H0 

� 

ej(ω−λk−2πl/R)
�


G0 e	 = 0, ∀ ω, and l = 1, . . . , R − 1 
k=0


N−1
� � 
j(ω−λk)

� � � 

H0 e G0 ej(ω−λk) = R, ∀ ω 

k=0 


