Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science

6.341: Discrete-Time Signal Processing

Fall 2005

Solutions for Problem Set 10

Issued: Tuesday, December 6, 2005.

Problem 10.1

Problem 1, Fall 2004 Final Exam

We begin by finding an expression for $G[k]$:

$$
\begin{equation*}
G[k]=\sum_{n=-\infty}^{\infty} g[n] e^{-j 2 \pi n k / N}=\sum_{n=-\infty}^{\infty} x[n] w[n] e^{-j 2 \pi n k / N} \tag{1}
\end{equation*}
$$

Since we're given that $h_{k}[n]=e^{j 2 \pi n k / N}$, we can solve for $v_{k}[m]$:

$$
\begin{equation*}
v_{k}[m]=\sum_{n=-\infty}^{\infty} x[m] h_{k}[m-n]=\sum_{n=-\infty}^{\infty} x[m] h_{0}[m-n] e^{j 2 \pi(m-n) k / N} \tag{2}
\end{equation*}
$$

Evaluating (2) for $m=0$ gives

$$
\begin{equation*}
v_{k}[0]=\sum_{n=-\infty}^{\infty} x[n] h_{0}[-n] e^{-j 2 \pi n k / N}=G[k], \tag{3}
\end{equation*}
$$

and comparing (1) and (3) shows us that $w[n]$ and $h_{0}[n]$ are related by

$$
w[n]=h_{0}[-n]=\left\{\begin{array}{cc}
0.9^{-n}, & -M+1 \leq n \leq 0 \\
0, & \text { otherwise }
\end{array} .\right.
$$

Problem 10.2

$X_{w}[k]$ is defined as

$$
X_{w}[k]=\sum_{n=0}^{255} x[n] 0.9^{-n} e^{-j \frac{2 \pi}{256} k n}
$$

which is what we'd like our system to eventually implement. In terms of $v_{k}[n]$ this is

$$
X_{w}[k]=v_{k}\left[N_{k}\right]=\sum_{n=-\infty}^{\infty} x[n] h_{k}\left[N_{k}-n\right]=\sum_{n=-\infty}^{\infty} x[n] h_{0}\left[N_{k}-n\right] e^{-j \omega_{k}\left(N_{k}-n\right)}
$$

We can allow the limits of the sum to go from $n=0$ to $n=255$ if we restrict $h_{0}\left[N_{k}-n\right]$ to be possibly nonzero only for $N_{k}-n \geq 0$ and $N_{k}-n \leq 255$, or equivalently, for $N_{k}-255 \leq n \leq N_{k}$. Since the prototype filter must be causal, $N_{k}-255$ (the lower limit on the filter's possibly nonzero region) must be greater than or equal to $0 . N_{k}$ can then be judiciously chosen to be

$$
N_{k}=256 \quad \forall k
$$

We now have

$$
v_{k}[256]=\sum_{n=0}^{255} x[n] h_{0}[256-n] e^{-j \omega_{k}(256-n)}
$$

Putting issues with the exponential term aside for the moment, we know we'd like to have

$$
h_{0}[256-n]=\left\{\begin{array}{cc}
0.9^{-n}, & 0 \leq n \leq 255 \\
0, & \text { otherwise }
\end{array}\right.
$$

With a change of variables this becomes

$$
h_{0}[n]=\left\{\begin{array}{cc}
0.9^{n-256}, & 1 \leq n \leq 256 \\
0, & \text { otherwise }
\end{array}\right.
$$

and so we now have

$$
v_{k}[256]=\sum_{n=0}^{255} x[n] 0.9^{-n} e^{-j \omega_{k}(256-n)}
$$

We'd still like

$$
e^{-j \omega_{k}(256-n)}=e^{-j \frac{2 \pi}{256} k n},
$$

which is satisfied for

$$
\omega_{k}=-\frac{2 \pi}{256} k
$$

We now have

$$
v_{k}[256]=\sum_{n=0}^{255} x[n] 0.9^{-n} e^{j \frac{2 \pi}{256} k(256-n)}=\sum_{n=0}^{255} x[n] 0.9^{-n} e^{j 2 \pi k} e^{-j \frac{2 \pi}{256} k n}=\sum_{n=0}^{255} x[n] 0.9^{-n} e^{-j \frac{2 \pi}{256} k n}
$$

Problem 10.3

(a) $L=256$ and $R=1$
(b) $M:(\mathrm{a}), \omega_{k}:(\mathrm{b}), a_{l}:(\mathrm{a})$

Problem 10.4

OSB Problem 10.40, (a) - (d)
(a)

$$
\begin{array}{rlr}
X[n, \lambda) & =\sum_{m=-\infty}^{\infty} x[n+m] w[m] e^{-j \lambda m} \\
& =\sum_{m^{\prime}=-\infty}^{\infty} x\left[m^{\prime}\right] w\left[m^{\prime}-n\right] e^{-j \lambda m^{\prime}} e^{j \lambda n} \\
h_{0}[n]=w[-n] & e^{j \lambda n} \sum_{m^{\prime}=-\infty}^{=}\left(x\left[m^{\prime}\right] e^{-j \lambda m^{\prime}}\right) h_{0}\left[n-m^{\prime}\right] \\
x^{\prime}[n]=x[n] e^{-j \lambda n} & e^{j \lambda n} x^{\prime}[n] * h_{0}[n]
\end{array}
$$

Now we show that $X[n, \lambda)$ is the output of the system of Figure P10.40-1 if $h_{0}[n]=w[-n]$ holds.

Obviously it is LTI since $e^{-j \lambda n}$ can be treated as constant when λ is fixed.
When $x[n]=\delta[n]$, the input to filter $h_{0}[n]$ is still $\delta[n]$. The output of filter $h_{0}[n]$ is $h_{0}[n]=w[-n]$. Thus, the impulse response of the equivalent LTI system is:

$$
h_{e q}[n]=w[-n] e^{j \lambda n}
$$

The frequency response of the equivalent LTI system is

$$
H_{e q}\left(e^{j \omega}\right)=W\left(e^{j(\lambda-\omega)}\right)
$$

(b) Similar to part(a), when $x[n]=\delta[n]$,

$$
\begin{aligned}
s[n] & =h_{o}[n]=w[-n] \\
S\left(e^{j \omega}\right) & =W\left(e^{-j \omega}\right)
\end{aligned}
$$

For typical window sequences $w[n], W\left(e^{j \omega}\right)$ has a lowpass discrete-time Fourier transform. Therefore, $S\left(e^{j \omega}\right)=W\left(e^{j(-\omega)}\right)$ should also have a lowpass discrete-time Fourier transform, while $H_{\text {eq }}\left(e^{j \omega}\right)=W\left(e^{j(\lambda-\omega)}\right)$ have a bandpass discrete-time Fourier transform.
(c) Based on conclusion from part (a), we have:

$$
\begin{aligned}
y_{0}[n] & =X\left[n, \lambda_{0}\right) \\
y_{1}[n] & =X\left[n, \lambda_{1}\right) \\
& \cdots \\
y_{i}[n] & =X\left[n, \lambda_{i}\right) \\
& \cdots \\
y_{N-1}[n] & =X\left[n, \lambda_{N-1}\right)
\end{aligned}
$$

In total,

$$
\begin{aligned}
y[n] & =\sum_{i=0}^{N-1} X\left[n, \lambda_{i}\right) \\
& =\sum_{i=0}^{N-1} \sum_{m=-\infty}^{\infty} x[n+m] w[m] e^{-j \lambda_{i} m} \\
& =\sum_{m=-\infty}^{\infty} x[n+m] w[m] \sum_{i=0}^{N-1} e^{-j \lambda_{i} m}
\end{aligned}
$$

Since we assume $N \geq L \geq R$, we can consider only the items when $|m| \leq N$. Thus,

$$
\begin{aligned}
y[n] & =\sum_{m=-\infty}^{\infty} x[n+m] w[m] N \delta[m] \\
& =N x[n] w[0]
\end{aligned}
$$

(d) Consider a single channel,

In the frequency domain, the input to the decimator is

$$
X\left(e^{j\left(\omega+\lambda_{k}\right)}\right) H_{0}\left(e^{j \omega}\right)
$$

so the output of the decimator is

$$
\frac{1}{R} \sum_{l=0}^{R-1} X\left(e^{j\left((\omega-2 \pi l) / R+\lambda_{k}\right)}\right) H_{0}\left(e^{j(\omega-2 \pi l) / R}\right)
$$

The output of the expander is

$$
\frac{1}{R} \sum_{l=0}^{R-1} X\left(e^{j\left(\omega+\lambda_{k}-2 \pi l / R\right)}\right) H_{0}\left(e^{j(\omega-2 \pi l / R)}\right)
$$

The output $Y_{k}\left(e^{j \omega}\right)$ is then

$$
Y_{k}\left(e^{j \omega}\right)=\frac{1}{R} \sum_{l=0}^{R-1} G_{0}\left(e^{j\left(\omega-\lambda_{k}\right)}\right) X\left(e^{j(\omega-2 \pi l / R)}\right) H_{0}\left(e^{j\left(\omega-\lambda_{k}-2 \pi l / R\right)}\right)
$$

The overall system output is formed by summing these terms over k.

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =\sum_{k=0}^{N-1} Y_{k}\left(e^{j \omega}\right) \\
& =\frac{1}{R} \sum_{l=0}^{R-1} \sum_{k=0}^{N-1} G_{0}\left(e^{j\left(\omega-\lambda_{k}\right)}\right) X\left(e^{j(\omega-2 \pi l / R)}\right) H_{0}\left(e^{j\left(\omega-\lambda_{k}-2 \pi l / R\right)}\right)
\end{aligned}
$$

To cancel the aliasing, we rewrite the equation as follows:

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =X\left(e^{j \omega}\right) \frac{1}{R} \sum_{k=0}^{N-1} H_{0}\left(e^{j\left(\omega-\lambda_{k}\right)}\right) G_{0}\left(e^{j\left(\omega-\lambda_{k}\right)}\right) \\
& +\underbrace{\sum_{l=1}^{R-1} X\left(e^{j(\omega-2 \pi l / R)}\right) \frac{1}{R} \sum_{k=0}^{N-1} G_{0}\left(e^{j\left(\omega-\lambda_{k}\right)}\right) H_{0}\left(e^{j\left(\omega-\lambda_{k}-2 \pi l / R\right)}\right)}_{\text {Aliasing Component }}
\end{aligned}
$$

Therefore, we require the following relations to be satisfied so that $y[n]=x[n]$:

$$
\begin{aligned}
\sum_{k=0}^{N-1} G_{0}\left(e^{j\left(\omega-\lambda_{k}\right)}\right) H_{0}\left(e^{j\left(\omega-\lambda_{k}-2 \pi l / R\right)}\right) & =0, \quad \forall \omega, \text { and } l=1, \ldots, R-1 \\
\sum_{k=0}^{N-1} H_{0}\left(e^{j\left(\omega-\lambda_{k}\right)}\right) G_{0}\left(e^{j\left(\omega-\lambda_{k}\right)}\right) & =R, \quad \forall \omega
\end{aligned}
$$

