
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.341 Discrete-Time Signal Processing
Fall 2004

FINAL EXAM
Monday, December 13, 2004 (DuPont 1:30-4:30pm)

• This is a closed book exam, but three 812
00× 1100 handwritten sheets of notes (both sides) are

allowed.

• Calculators are not allowed.

• Make sure you have all 20 numbered pages of this exam.

• There are 8 problems on the exam.

• The problems are not in order of difficulty. We recommend that you read through all the problems,
then do the problems in whatever order suits you best. Note, too, that usually each of the
parts of a problem can be done independently.

• A correct answer does not guarantee full credit, and a wrong answer does not guarantee loss of credit.
You should clearly but concisely indicate your reasoning and show all relevant work.

• Please be neat–we can’t grade what we can’t decipher.

• All answers and work to be graded should be in this exam booklet. Only this answer booklet is to
be handed in. No additional pages will be considered in the grading. You may want to work
things through in the blank areas of the exam first, and then neatly transfer the work you would like
us to look at into the exam booklet. Let us know if you need additional scratch paper.

• We will again be using the EGRMU grading strategy. This strategy focuses on your level of under-
standing of the material associated with each problem. Specifically, when we grade each part of a
problem we will do our best to assess, from your work, your level of understanding.

• Graded Exams and Final Course Grade:
Graded exams, graded projects part II, and final course grades can be picked up in 36-615 on or
after THURSDAY morning, December 16th. If you would like your graded exam and project mailed
to you, please leave an addressed, stamped envelope with us at the end of the exam. We’ll use the
envelope as is, so please be sure to address it properly and with enough postage. We guarantee that
we’ll put it into the proper mailbox, but we don’t guarantee anything beyond that.

OUT OF CONSIDERATION FOR THE 6.341 STAFF, UNDER NO
CIRCUMSTANCES WILL GRADES BE AVAILABLE BY PHONE OR EMAIL.
PLEASE DON’T EVEN ASK.
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THIS PAGE IS INTENTIONALLY LEFT BLANK. YOU CAN USE IT AS SCRATCH PAPER BUT
NOTHING ON THIS PAGE WILL BE CONSIDERED DURING GRADING
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Problem 1 [ 10% ]

The system in figure 1-1, uses a modulated filter bank for spectral analysis. The lowpass impulse response
h0[n] is sketched in figure 1-2.
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Name:

An alternative system for spectral analysis is shown in figure 1-3. Determine w[n] so that G[k] = vk[0], for
k = 0, 1, ..., N − 1.
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Figure 1-3

Work to be looked at and answer:
Note: As with all the problems, a correct answer without explanation and related work will not guarantee
full credit.
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Problem 2 [ 8% ]

Consider the stable LTI system with system function

H(z) =
1 + 4z−2

1− 1
4z
−1 − 3

8z
−2

The system function H(z) can be factored such that

H(z) = Hmin(z)Hap(z)

where Hmin(z) is a minimum phase system, and Hap(z) is an allpass system, i.e.,

|Hap(e
jω)| = 1

Sketch the pole-zero diagrams for Hmin(z) and Hap(z). Be sure to label the positions of all the poles and
zeros. Also, indicate the region of convergence for Hmin(z) and Hap(z).

Work to be looked at and answer:
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Name:

Problem 3 [ 8% ]

The block diagram in figure 3-1 represents a system that we would like to implement. Determine a block
diagram of an equivalent system consisting of a cascade of LTI systems, compressor blocks, and expander
blocks which results in the minimum number of multiplications per output sample.

Note: By "equivalent system" we mean that it produces the same output sequence for any given input
sequence.

- -x[n] ↑ 3 ↓ 2 - H(z) - ↓ 2 ↑ 3- -y[n]

Figure 3-1

H(z) =
z−6

7 + z−6 − 2z−12

Work to be looked at and answer:
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Problem 4 [ 8% ]

Consider a colored wide sense stationary stochastic signal s[n] which we desire to whiten using the system
in figure 4-1:
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1−
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Figure 4-1

In designing the optimal whitening filter for a given order p, we pick a(p)k , k = 1, ..., p that solve the following
equations, where φs[m] is the autocorrelation of s[n].⎡⎢⎢⎢⎢⎢⎢⎣
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It is known that the optimal 2nd order whitening filter for s[n] is H2(z) = 1+

1
4z
−1− 1

8z
−2, (i.e. a(2)1 = −14 ,

a
(2)
2 = 1

8), which we implement in the 2
nd order lattice structure in figure 4-2:
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Figure 4-2: Lattice Structure for 2nd Order System

We decided that a second order implementation is not sufficient for our application, and we would like to
use a 4th order system, with transfer function

H4(z) = 1−
4X

k=1

a
(4)
k z−k

We implement this system with the lattice structure in figure 4-3:
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Name:

Determine which, if any of H4(z), k1, k2, k3, k4 can be exactly determined from the information given
above. Explain why you cannot determine the remaining, if any, parameters.

Note: For this problem you may find useful the lecture slide which we have reproduced on page 20.

Work to be looked at and answer:
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Problem 5 [ 16% ]

Each part of this problem may be solved independently. All parts use the signal x[n] shown in figure 5-1.

Figure 5-1:

[%8] (a) Let X
¡
ejω
¢
be the DTFT of x[n]. Define

R[k] = X
¡
ejω
¢
|ω= 2πk

4
, 0 ≤ k ≤ 3

Sketch the signal r[n] which is the four-point inverse DFT of R[k].

Work to be looked at and answer: (Not necessary to derive the result mathematically, but explain
your result.)
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Name:

[%8] (b) Let X[k] be the eight-point DFT of x[n], and let H[k] be the eight-point DFT of the impulse response
h[n] shown in figure 5-2. Define Y [k] = X[k]H[k] for 0 ≤ k ≤ 7. Sketch y[n], the eight-point DFT of
Y [k].

Figure 5-2:

Work to be looked at and answer:
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Problem 6 [ 10% ]

Consider a time-limited continuous-time signal xc(t) whose duration is 100ms. Assume that this signal has a
bandlimited Fourier transform such that Xc(jΩ) = 0 for |Ω| ≥ 2π(10, 000)rad/s; i.e., assume that aliasing is
negligible. We want to compute samples of Xc(jΩ) with 5Hz spacing over the interval 0 ≤ Ω ≤ 2π(10, 000).
This can be done with a 4000-point DFT. Specifically, we want to obtain a 4000-point sequence x[n] for
which the 4000-point DFT is related to Xc(jΩ) by:

X[k] = αXc(j2π · 5 · k), k = 0, 1, . . . 1999, (1)

where α is a known scale factor. The following method is proposed to obtain a 4000-point sequence whose
DFT gives the desired samples of Xc(jΩ). xc(t) is sampled with a sampling period of T = 50µs. The
resulting 2000-point sequence is used to form the sequence x̂[n] as follows:

x̂[n] =

⎧⎨⎩
xc(nT ), 0 ≤ n ≤ 1999,
xc((n− 2000)T ), 2000 ≤ n ≤ 3999,
0, otherwise.

(2)

The 4000-point DFT X̂[k] of this sequence is computed. For this method, determine how X̂[k] is related
to Xc(jΩ). Indicate this relationship in a sketch for a “typical” Fourier transform Xc(jΩ). Explicitly state
whether or not X̂[k] is the desired result, i.e. whether X̂[k] equals X[k] as specified in eqn(1).

Work to be looked at and answer:
Note: As with all the problems, a correct answer without explanation and related work will not guarantee
full credit.
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Name:

Work to be looked at and answer for problem 6:
Note: This space may or may not be needed, but is not to be used for any other problem.
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Problem 7 [ 10% ]

The system in figure 7-1 computes an N -point (where N is an even number) DFT X[k] of an N-point
sequence x[n] by decomposing x[n] into two N/2-point sequences g1[n] and g2[n], computing the N/2-point
DFT’s G1[k] and G2[k], and then combining these to form X[k].
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Figure 7-1

If g1[n] is the even-indexed values of x[n] and g2[n] is the odd-indexed values of x[n] i.e. g1[n] = x[2n] and
g2[n] = x[2n+ 1] then X[k] will be the DFT of x[n].

In using the system in figure 7-1 an error is made in forming g1[n] and g2[n], such that g1[n] is incorrectly
chosen as the odd-indexed values and g2[n] as the even indexed values but G1[k] andG2[k] are still combined
as in figure 7-1 and the incorrect sequence X̂[k] results. Express X̂[k] in terms of X[k]

Work to be looked at and answer:
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Name:

Problem 8 [ 30% ] Note: each part of this problem is independent of the others.

The current CD technology, from production to playback, can be approximated with the block diagram in
figure 8-1.
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A C/D is defined through the following relationships between the input xc(t) and the output xd[n]:

xd[n] = xc(nT ) and Rxdxd [m] = Rxcxc(mT )

A D/C is defined through the following relationships between the input xd[n] and the output xc(t):

xc(t) =
+∞X

n=−∞
xd[n]

sin[π(t− nT )/T ]

π(t− nT )/T
and Rxcxc(τ) =

+∞X
n=−∞

Rxdxd [m]
sin[π(τ −mT )/T ]

π(τ −mT )/T

x(t) is a signal bandlimited to ±π/T , i.e. X(jΩ) = 0 for |Ω| ≥ π/T .
Assume the additive noise model for a quantizer holds, i.e. e1[n] in figure 8-1 is zero-mean, white, has
variance σ2e1 and is uncorrelated with x1[n].

[6%] (a) Determine E{x2e1(t)}, the power of the quantization noise at the output of the playback system.

Work to be looked at and answer:
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Sony and Philips offer a new CD format called Superaudio CD. The new format can be approximately
described with the block diagram in figure 8-2.
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where e2[n] in figure 8-2 is zero-mean, white, has variance σ2e2 and is uncorrelated with x1[n]. The power
spectral density of x(t), Px(jΩ), is as shown in figure 8-3.
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[8%] (b) In the absence of quantization (i.e. if e2[n] = 0), the playback system in figure 8-2 should reconstruct
x(t) exactly. In the presence of quantization, the overall system should minimize E{x2e2(t)}, the
quantization noise power at the output. Using the components shown in figure 8-4, design the
minimum cost playback system to reconstruct x(t) from xSA[n] that satisfies these requirements.
Make sure you specify the values for all the parameters of all the components you include in your
design.

Note: In the components table all the components have inputs and outputs of arbitrary precision, and can
be used with any input. The only exception is with the component named "1-bit D/C converter" that can
only be used with a bitstream input, i.e. a signal which has already been quantized to 1-bit per sample.
This component cannot be used with any other kind of input.
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Name:

R

Component Parameters       Cost in $

Expander              Ratio: R                  1

Compressor             Ratio: R                  1R

0ω

G
)( ωjeH Discrete-Time       

Ideal Lowpass
Filter

Gain: G
Cutoff Frequency: 0ω 1

1-bit D/C
Converter

0T

1-bit D/C
Converter Rate: 0T

0Ω

G
)( ΩjH Continuous-Time       

Ideal Lowpass
Filter

Gain: G
Cutoff Frequency: 0Ω 20

1

D/C
Converter

0T

D/C
Converter 0TRate: 15

RR

Component Parameters       Cost in $

Expander              Ratio: R                  1

Compressor             Ratio: R                  1RR

0ω

G
)( ωjeH

0ω

G
)( ωjeH Discrete-Time       

Ideal Lowpass
Filter

Gain: G
Cutoff Frequency: 0ω 1

1-bit D/C
Converter

0T

1-bit D/C
Converter

0T

1-bit D/C
Converter Rate: 0T

0Ω

G
)( ΩjH

0Ω

G
)( ΩjH Continuous-Time       

Ideal Lowpass
Filter

Gain: G
Cutoff Frequency: 0Ω 20

1

D/C
Converter

0T

D/C
Converter 0TRate: 15

Figure 8-4:

Work to be looked at and answer for part (b):
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[8%] (c) Repeat part (b) assuming the cost of an analog lowpass filter is now $1. Figure 8-4 is repeated here
with the new cost for the analog filter.

Again note that: In the components table all the components have inputs and outputs of arbitrary precision,
and can be used with any input. The only exception is with the component named "1-bit D/C converter"
that can only be used with a bitstream input, i.e. a signal which has already been quantized to 1-bit per
sample. This component cannot be used with any other kind of input.
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Work to be looked at and answer:

18



Name:

[8%] (d) With present technology, reconstructing the signal from traditional CDs (i.e. the reconstruction
system in figure 8-1) consumes 2 Watts, while the Superaudio CD (i.e. the reconstruction system in
figure 8-2) consumes 1 Watts (1 Watt = 1 Joule/sec). However, the energy consumption of reading
1000 bits from the disc is the same.

(i) If T = 1/40kHz and L = 64, determine how many bits per second each format requires to store
x(t).

(ii) If T = 1/40kHz and L = 64, as above, determine the energy consumption in Joules per 1000 bits
of storage, below which the Superaudio CD format is more power efficient than the traditional
CD format in playing back the signal.

END OF EXAM
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YOU CAN USE THIS PAGE AS SCRATCH PAPER BUT NOTHING ON THIS PAGE WILL BE
CONSIDERED DURING GRADING
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