Lecture # 18 Session 2003 ASR for Spoken-Dialogue Systems

- Introduction
- Speech recognition issues
 - Example using SUMMIT system for weather information
- Reducing computation
- Model aggregation
- Committee-based classifiers

Example Dialogue-based Systems

- Vocabularies typically have 1000s of words
- Widely deployed systems tend to be more conservative
- Directed dialogues have fewer words per utterance
- Word averages lowered by more confirmations
- Human-human conversations use more words

Telephone-based, Conversational, ASR

- Telephone bandwidths with variable handsets
- Noisy background conditions
- Novice users with small number of interactions
 - Men, women, children
 - Native and non-native speakers
 - Genuine queries, browsers, hackers
- Spontaneous speech effects
 - e.g., filled pauses, partial words, non-speech artifacts
- Out-of-vocabulary words and out-of-domain queries
- Full vocabulary needed for complete understanding
 - Word and phrase spotting are not primary strategies
 - Mixed-initiative dialog provides little constraint to recognizer
- Real-time decoding

Data Collection Issues

- System development is chicken & egg problem
- Data collection has evolved considerably
 - Wizard-based \rightarrow system-based data collection
 - Laboratory deployment \rightarrow public deployment
 - 100s of users \rightarrow thousands \rightarrow millions
- Data from real users solving real problems accelerates technology development
 - Significantly different from laboratory environment
 - Highlights weaknesses, allows continuous evaluation
 - But, requires systems providing real information!
- Expanding corpora requires unsupervised training or adaptation to unlabelled data

Data Collection (Weather Domain)

 Initial collection of 3,500 read utterances and 1,000 wizard utterances

• Over 756K utterances from 112K calls since May, 1997

Weather Corpus Characteristics

Corpus dominated by American male speakers

- Approximately 11% of data contained significant noises
- Over 6% of data contained spontaneous speech effects
- At least 5% of data from speakerphones

Vocabulary Selection

- Constrained domains naturally limit vocabulary sizes
- 2000 word vocabulary gives good coverage for weather
- ~2% out-of-vocabulary rate on test sets

Vocabulary

- Current vocabulary consists of nearly 2000 words
- Based on system capabilities and user queries

Туре	Size	Examples	
Geography	933	boston, alberta, france, africa	
Weather	217	temperature, snow, sunny, smog	
Basic	815	i, what, january, tomorrow	

Incorporation of common reduced words & word pairs

Туре	Examples
Reduction	give_me, going_to, want_to, what_is, i_would
Compound	clear_up, heat_wave, pollen_count

• Lexicon based on syllabified LDC PRONLEX dictionary

Example Vocabulary File

Sorted alphabetically Utterance start & end marker Pauses at utterance start & end <pause1> <pause2> Filled pause models <uh> *'d items have no acoustic realization <um> **Out-of-vocabulary word model** <unknown: <>'d words don't count as errors a m Underbars distinguish letter am sequences from actual words don+t + symbol conventionally used for ' new yo Lower case is a common convention **Sixtv** today Numbers tend to be spelled out today+s Each word form has separate entry

а

Example Baseform File

<pause1> <pause2></pause2></pause1>	: (+)	previous symbol can repeat
- <uh></uh>	: ah_fp : ah_fp m	special filled pause vowel
a_m either laptop	: (iy , ay)th er : I ae pd t aa pd	alternate pronunciations
new_york northwest	: n uw <mark>&y ao r kd</mark> : n ao r th w eh s td	word break allowing pause
trenton winter	: tr r eh n tq en : w ih nt er	

Editing Generated Baseforms

- Automatically generated baseform file should be manually checked for the following problems:
 - Missing pronunciation variants that are needed
 - Unwanted pronunciation variants that are present
 - Vocabulary words missing in PRONLEX

going_to	: g ow ix ng & t uw		
reading	: (r iy df ix ng , r eh df ix ng)		
woburn	: ??		
going_to	: g(ow ix ng & t uw , ah n ax)		
reading	: r eh df ix ng		
woburn	: w(ow , uw)b er n		

Applying Phonological Rules

- Phonemic baseforms are canonical representation
- Baseforms may have multiple acoustic realizations
- Acoustic realizations are phones or phonetic units
- Example:

Example Phonological Rules

• Example rule for /t/ deletion ("destination"):

• Example rule for palatalization of /s/ ("miss you"):

{} s {y} => s | sh;

MIT

Language Modelling

- Class bi- and trigrams used to produce 10-best outputs
- Training data augmented with city and state constraints
- Relative entropy measure used to help select classes

raining, snowing	humidity, temperature
cold, hot, warm	advisories, warnings
extended, general	conditions, forecast, report

• 200 word classes reduced perplexities and error rates

Туре	Perplexity	% Word Error Rate
word bigram	18.4	16.0
+ word trigram	17.8	15.5
class bigram	17.6	15.6
+ class trigram	16.1	14.9

Defining N-gram Word Classes

CITY ==> boston CITY ==> chicago CITY ==> seattle Class definitions have class name on left and word on right

<U>_DIGIT ==> one <U>_DIGIT ==> two <U>_DIGIT ==> three Class names with "<U>_" forces all words to be equally likely

DAY ==> today | tomorrow

Alternate words in class can be placed on same line with "|" separator

The Training Sentence File

- An *n*-gram model is estimated from training data
- Training file contains one utterance per line
- Words in training file must have same case and form as words in vocabulary file
- Training file uses the following conventions:
 - Each clean utterance begins with <pause1> and ends with <pause2>
 - Compound word underbars are typically removed before training
 - Underbars automatically re-inserted during training based on compound words present in vocabulary file
- Special artifact units may be used for noises and other significant non-speech events:
 - <clipped1>, <clipped2>, <hangup>, <cough>, <laugh>

Example Training Sentence File

Composing FST Lexical Networks

- Four basic FST networks are composed to form full search network.
 - G: Language model
 - L : Lexical model
 - P : Pronunciation model
 - C : Context-dependent acoustic model mapping
- Mathematical composed using the expression:

CoPoLoG

FST Example

Acoustic Models

- Models can be built for segments and boundaries
 - Best accuracy can be achieved when both are used
 - Current real-time recognition uses only boundary models
- Boundary labels combined into classes
 - Classes determined using decision tree clustering
 - One Gaussian mixture model trained per class
 - 112 dimension feature vector reduced to 50 dimensions via PCA
 - 1 Gaussian component for every 50 training tokens (based on # dims)
- Models trained on over 100 hours of spontaneous telephone speech collected from several domains

MIT

Search Details

- Search uses forward and backward passes:
 - Forward Viterbi search using bigram
 - Backwards A* search using bigram to create a word graph
 - Rescore word graph with trigram (i.e., subtract bigram scores)
 - Backwards A* search using trigram to create *N*-best outputs
- Search relies on two types of pruning:
 - Pruning based on relative likelihood score
 - Pruning based maximum number of hypotheses
 - Pruning provides tradeoff between speed and accuracy
- Search can control tradeoff between insertions and deletions
 - Language model biased towards short sentences
 - Word transition weight (wtw) heuristic adjusted to remove bias

Recognition Experiments

- Collecting real data improves performance:
 - Enables increased complexity and improved robustness for acoustic and language models
 - Better match than laboratory recording conditions

Error Analysis (2506 Utterance Test Set)

A* Search Latency

- Average latency ().62 seconds
- 85% < 1 second ; 99% < 2 seconds
- Latency not dependent on utterance length

MIT

Gaussian Selection

- ~50% of total computation is evaluation of Gaussian densities
- Can use binary VQ to select mixture components to evaluate
- Component selection criteria for each VQ codeword:
 - Those within distance threshold
 - Those within codeword (i.e., every component used at least once)
 - At least one component/model per codeword (i.e., only if necessary)
- Can significantly reduce computation with small error loss

Model Aggregation

- *K*-means and EM algorithms converge to different local minima from different initialization points
- Performance on development data not necessarily a strong indicator of performance on test data
 - TIMIT phonetic recognition error for 24 training trials

Aggregation Experiments

- Combining different training runs can improve performance
- Three experimental systems: phonetic classification, phonetic recognition (TIMIT), and word recognition (RM)
- Acoustic models:
 - Mixture Gaussian densities, randomly initialized K-means
 - 24 different training trials
- Measure average performance of M unique N-fold aggregated models (starting from 24 separate models)

% Error	Phone Classification	Phone Recognition	Word Rec.
M=24 N=1	22.1	29.3	4.5
M=6 N=4	20.7	28.4	4.2
M=1 N=24	20.2	28.1	4.0
% Reduction	8.3	4.0	12.0

Model Aggregation

 Aggregation combines N classifiers, with equal weighting, to form one aggregate classifier

 $\varphi_{\mathcal{A}}(\vec{x}) = \frac{1}{N} \sum_{n=1}^{N} \varphi_n(\vec{x})$

- The expected error of an aggregate classifier is less than the expected error of any randomly chosen constituent
- *N*-fold aggregate classifier has *N* times more computation
- Gaussian kernels of aggregate model can be hierarchically clustered and selectively pruned
 - Experiment: Prune 24-fold model back to size of smaller *N*-fold models

Aggregation Experiments

Phonetic Classification Confusions

• Most confusions occur within manner class

Committee-based Classification

- Change of temporal basis affects within-class error
 - -Smoothly varying cosine basis better for vowels and nasals
 - -Piecewise-constant basis better for fricatives and stops

• Combining information sources can reduce error

Committee-based Classifiers (Halberstadt, 1998)

- Uses multiple acoustic feature vectors and classifiers to incorporate different sources of information
- Explored 3 combination methods (e.g., voting, linear, indep.)
- Obtains state-of-the-art phonetic classification and recognition results (TIMIT)
- Combining 3 boundary models in Jupiter weather domain
 - Word error rate 10-16% relative reduction over baseline
 - Substitution error rate 14-20% relative reduction over baseline

Acoustic Measurements	% Error	% Sub
B1 (30 ms, 12 MFCC, telescoping avg)	11.3	6.4
B2 (30 ms, 12 MFCC+ZC+E+LFE, 4 cos±50ms)	12.0	6.7
B3 (10ms, 12 MFCC, 5 cos±75ms)	12.1	6.9
B1 + B2 + B3	10.1	5.5

Related Work

- ROVER system developed at NIST [Fiscus, 1997]
 - 1997 LVCSR Hub-5E Benchmark test
 - "Recognizer output voting error reduction"
 - Combines confidence-tagged word recognition output from multiple recognizers
 - Produced 12.5% relative reduction in WER
- Notion of combining multiple information sources
 - Syllable-based and word-based [Wu, Morgan et al, 1998]
 - Different phonetic inventories [AT&T]
 - 80, 100, or 125 frames per second [BBN]
 - Triphone and quinphone [HTK]
 - Subband-based speech recognition [Bourland, Dupont, 1997]

References

- E. Bocchieri. Vector quantization for the efficient computation of continuous density likelihoods. *Proc. ICASSP*, 1993.
- T. Hazen and A. Halberstadt. Using aggregation to improve the performance of mixture Gaussian acoustic models. *Proc. ICASSP*, 1998.
- J. Glass, T. Hazen, and L. Hetherington. Real-time telephone-based speech recognition in the Jupiter domain. *Proc. ICASSP*, 1999.
- A. Halberstadt. Heterogeneous acoustic measurements and multiple classifiers for speech recognition. Ph.D. Thesis, MIT, 1998.
- T. Watanabe et al. Speech recognition using tree-structured probability density function. *Proc. ICSLP*, 1994.