MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.374: Analysis and Design of Digital Integrated Circuits Problem Set # 1

Fall 2003

Issued: 9/9/03 Due: 9/18/03

Unless otherwise specified, use the 0.25 micron libraries for all HSPICE simulations.

Problem 1: Device Parameters

The data from five measurements made on a short channel NMOS device appears in Table 1. Given that $V_{DSAT} = 0.6 V$ and $k' = 100 \mu A/V^2$, calculate V_{T0} , γ , λ , $2/\phi_F/$, and W/L.

Meas. Number	V _{GS}	V _{DS}	V _{BS}	I _D (μ A)
1	2.5	1.8	0	1812
2	2	1.8	0	1297
3	2	2.5	0	1361
4	2	1.8	-1	1146
5	2	1.8	-2	1039

Table 1: Measured Data for Short Channel NMOS

Problem 2: Backgate Effect

The circuit in Fig. 1 is known as the *source follower* configuration. It achieves a DC level shift between the input and the output. The value of this shift is determined by the current I₀. Assume $x_d=0$, $\gamma=0.4$, $2|\phi_f|=0.6V$, $V_{T0}=0.43V$, $k_n'=115\mu A/V^2$ and $\lambda=0$.

Figure 1: NMOS source follower configuration

- a) Suppose we want the nominal level shift between V_i and V_o to be 0.6V in the circuit in Figure 1(a). Neglecting the backgate effect, calculate the width of M2 to provide this level shift (Hint: first relate V_i to V_o in terms of I_o).
- b) Now assume that an ideal current source replaces M2 (Figure 1(b)). The NMOS transistor M1 experiences a shift in V_T due to the backgate effect. Find V_T as a function of V_0 for V_0 ranging from 0 to 2.5V with 0.5V intervals. Plot V_T vs. V_0
- c) Plot V_o vs. V_i as V_o varies from 0 to 2.5V with 0.5 V intervals. Plot two curves: one neglecting the backgate effect and one accounting for it. How does the backgate effect influence the operation of the level converter?

At V_0 (with backgate effect) = 2.5V, find V_0 (ideal) and thus determine the maximum error introduced by the backgate effect.

Problem 3: Velocity Saturation

This problem explores the behavior of short-channel devices. For the HSPICE simulations of this problem you will use the 0.18u model parameters. Use the **HSPICE model parameters** which can be found in "log018_1.1"

a) Using HSPICE plot I_D versus V_{DS}, for the transistor of the following figure, with V_{GS} (0.6V, 0.8V, 1V,

Figure 2: Short channel Transistor.

1.2V, 1.4V, 1.6V, 1.8V) as a parameter. Comment on the dependence of I_D with respect to V_{GS} .

- b) Calculate the effective resistance for a high to low transition, using the method described in slide 44 (Handout 2).
- c) Consider two CMOS inverters with $(W_1/L_1)_n=(2.88u/1.44u)$, $(W_1/L_1)_p=(5.76u/1.44u)$ and $(W_2/L_2)_n=(0.36u/0.18u)$, $(W_2/L_2)_p=(0.72u/0.18u)$. Assume $V_{DD} = 1.8$ V and the output of the inverter is loaded by $C_L=100$ fF capacitance. Calculate the propagation delay t_P and check the answers with HSPICE.
- d) Repeat part c) sweeping the supply voltage V_{DD} from 0.4V to 1.8V (sweep step 0.2V). Plot the propagation delay t_Pversus the supply voltage V_{DD} in the same graph. Comment on the results.

Problem 4: Voltage transfer characteristics, Noise Margins

The next figure shows an all NMOS inverter.

a) Calculate V_{OH} , V_{OL} , and V_M for the new inverter.

Figure 3: An Alternate Inverter Implementation

- b) Use HSPICE to obtain the VTC.
- c) Calculate V_{IH}, V_{IL}, and the noise margins and comment on the results. How can you increase the noise margins and reduce the undefined region?
- d) Comment on the differences in the VTCs, robustness and regeneration between this inverter and a standard CMOS inverter.

Problem 5: Inverter Gain and Regions of Operation

The Figure 4 shows a piecewise linear approximation for the VTC. The transition region is approximated by a straight line with a slope equal to the inverter gain at V_M . The intersection of this line with the V_{OH} and the V_{OL} lines defines V_{IH} and V_{IL}

Figure 4: A Different Approach to Derive V_{IL} and V_{IH}

- The noise margins of a CMOS inverter are highly dependent on the sizing ratio, $r = k_p/k_n$, of the NMOS a) and PMOS transistors. Use HSPICE with $V_{Tn} = |V_{Tp}|$ to determine the value of r that results in equal noise margins? Give a qualitative explanation.
- b) Section 5.3.2 of the text uses this piecewise linear approximation to derive simplified expressions for NM_{H} and NM_{L} in terms of the inverter gain. The derivation of the gain is based on the assumption that both the NMOS and the PMOS devices are velocity saturated at V_M . For what range of r is this assumption valid? What is the resulting range of V_M ?
- c) Use the method from section 5.3.2 to derive an expression for the inverter gain at V_M for the case when the sizing ratio is chosen to place V_M just below limits of the range where both devices are velocity saturated. What are the operating regions of the NMOS and the PMOS?

Problem 6: Static CMOS Inverter

For this problem use scalable CMOS design rules and assume:

 $V_{DD} = 2.5$ V, $W_{P}/L = 1.25/0.25$, $W_{N}/L = 0.375/0.25$, $L=L_{eff} = 0.25$ µm (i.e. $x_d = 0$ µm), $C_L = C_{inv-gate}$, $k_n' = 115$ µA/V², $k_p' = -30$ µA/V², $V_{tn0} = |V_{tp0}| = 0.4$ V, $\lambda = 0$ V⁻¹, $\gamma = 0.4$, $2|\phi_f| = 0.6$ V, and $t_{ox} = 58$ A. Use the Hspice model parameters for parasitic capacitance given below (i.e. C_{gd0} , C_j , C_{jsw}), and assume that $V_{SB} = 0$ V for all problems except part (e).

Figure 5: CMOS inverter with capacitive load.

Parasitic Capacitance Parameters (F/m)## NMOS CGDO=3.11x10⁻¹⁰, CGSO=3.11x10⁻¹⁰, CJ=2.02x10⁻³, CJSW=2.75x10⁻¹⁰

PMOS

- CGDO=2.68x10⁻¹⁰, CGSO=2.68x10⁻¹⁰, CJ=1.93x10⁻³, CJSW=2.23x10⁻¹⁰
- a) What is the V_m for this inverter?
- b) What is the effective load capacitance C_{Leff} of this inverter? (include parasitic capacitance, refer to notes for K_{eq} and m.) Hint: You must assume certain values for the source/drain areas and perimeters since there is no layout. For our scalable CMOS process, $\lambda = 0.125 \,\mu\text{m}$, and the source/drain extensions are 5λ for the PMOS; for the NMOS the source/drain contact regions are $5\lambda x 5\lambda$.

- c) Calculate t_{PHL} , t_{PLH} assuming the result of (b) is ' $C_{Leff} = 6.5$ fF'. (Assume ideal step input, i.e. $t_{rise} = t_{fall} = 0$. Do this part by computing the average current used to charge/discharge C_{Leff} .)
- d) Find (W_p/W_n) such that $t_{PHL} = t_{PLH}$.
- e) Suppose we increase the width of the transistors to reduce the t_{PHL} , t_{PLH} . Do we get a proportional decrease in the delay times? Justify your answer.
- f) Suppose $V_{SB} = 1$ V, what is the value of V_{tn} , V_{tp} , V_m ? How does this qualitatively affect C_{Leff} ?
- g) Use Magic to create a layout for this inverter. Extract the schematic, including parasitic capacitance, from the layout and use HSPICE to simulate the circuit and measure t_P and the average power for the following input V_{in} : pulse(0 V_{DD} 5n 0.1n 0.1n 9n 20n), as V_{DD} varies from 1V 2.5V with 0.25V interval. [$t_P = (t_{PHL} + t_{PLH}) / 2$]. Using this data, plot ' t_P vs. V_{DD} ', and 'Power vs. V_{DD} '.

The extracted layout will include parasitics so you need not manually include AS, AD, PS, PD in your spice deck, but remember to manually add $C_L = 6.5$ fF. Set $V_{SB} = 0$ V for this problem. Use the **HSPICE model parameters** which can be found in "logic025.1".

h) Using HSPICE, simulate the circuit for a set of 'pulse' inputs with rise and fall times of t_{in_rise,fall}=1ns, 2ns, 5ns, 10ns, 20ns. For each input, measure (1) the rise and fall times t_{out_rise} and t_{out_fall} of the inverter output, (2) the total energy lost E_{total}, and (3) the energy lost due to short circuit current E_{short}. For measuring short circuit power, use the technique discussed in class (slide 96, Handout 2). Use the HSPICE model parameters which can be found in "logic025.1"

Using this data, prepare a plot of (1) $(t_{out_rise}+t_{out_fall})/2$ vs. $t_{in_rise,fall}$, (2) E_{total} vs. $t_{in_rise,fall}$, (3) E_{short} vs. $t_{in_rise,fall}$ and (4) E_{short}/E_{total} vs. $t_{in_rise,fall}$.

Provide simple explanations for:
(i) Why the slope for (1) is less than 1?
(ii) Why *E*_{short} increases with *t*_{in_rise,fall}?
(iii) Why *E*_{total} increases with *t*_{in_rise,fall}?