MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Electrical Engineering and Computer Science

 6.374: Analysis and Design of Digital Integrated Circuits

 6.374: Analysis and Design of Digital Integrated Circuits Problem Set \# 1

 Problem Set \# 1}

Fall 2003
Issued: 9/9/03
Due: 9/18/03

Unless otherwise specified, use the 0.25 micron libraries for all HSPICE simulations.

Problem 1: Device Parameters

The data from five measurements made on a short channel NMOS device appears in Table 1. Given that $V_{D S A T}=0.6 V$ and $k^{\prime}=100 \mu A / V^{2}$, calculate $V_{T 0}, \gamma, \lambda, 2 / \phi_{F} /$, and W / L.

Table 1: Measured Data for Short Channel NMOS

Meas. Number	$\mathbf{V}_{\mathbf{G S}}$	$\mathbf{V}_{\mathbf{D S}}$	$\mathbf{V}_{\mathbf{B S}}$	$\mathbf{I}_{\mathbf{D}}(\boldsymbol{\mu} \mathbf{A})$
1	2.5	1.8	0	1812
2	2	1.8	0	1297
3	2	2.5	0	1361
4	2	1.8	-1	1146
5	2	1.8	-2	1039

Problem 2: Backgate Effect

The circuit in Fig. 1 is known as the source follower configuration. It achieves a DC level shift between the input and the output. The value of this shift is determined by the current I_{0}. Assume $x_{d}=0, \gamma=0.4,2\left|\phi_{\mathrm{f}}\right|=0.6 \mathrm{~V}$, $V_{T 0}=0.43 \mathrm{~V}, k_{n}{ }^{\prime}=115 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $\lambda=0$.

Figure 1: NMOS source follower configuration
a) Suppose we want the nominal level shift between V_{i} and V_{o} to be 0.6 V in the circuit in Figure 1(a). Neglecting the backgate effect, calculate the width of M2 to provide this level shift (Hint: first relate V_{i} to V_{o} in terms of I_{o}).
b) Now assume that an ideal current source replaces M2 (Figure 1(b)). The NMOS transistor M1 experiences a shift in V_{T} due to the backgate effect. Find V_{T} as a function of V_{o} for V_{o} ranging from 0 to 2.5 V with 0.5 V intervals. Plot V_{T} vs. V_{o}
c) Plot V_{o} vs. V_{i} as V_{o} varies from 0 to 2.5 V with 0.5 V intervals. Plot two curves: one neglecting the backgate effect and one accounting for it. How does the backgate effect influence the operation of the level converter?

At $\mathrm{V}_{\mathrm{o}}($ with backgate effect $)=2.5 \mathrm{~V}$, find $\mathrm{V}_{\mathrm{o}}($ ideal $)$ and thus determine the maximum error introduced by the backgate effect.

Problem 3: Velocity Saturation

This problem explores the behavior of short-channel devices. For the HSPICE simulations of this problem you will use the 0.18 u model parameters. Use the HSPICE model parameters which can be found in "log018_1.l"
a) Using HSPICE plot I_{D} versus V_{DS}, for the transistor of the following figure, with $\mathrm{V}_{\mathrm{GS}}(0.6 \mathrm{~V}, 0.8 \mathrm{~V}, 1 \mathrm{~V}$,

Figure 2: Short channel Transistor.
$1.2 \mathrm{~V}, 1.4 \mathrm{~V}, 1.6 \mathrm{~V}, 1.8 \mathrm{~V})$ as a parameter. Comment on the dependence of I_{D} with respect to V_{GS}.
b) Calculate the effective resistance for a high to low transition, using the method described in slide 44 (Handout 2).
c) Consider two CMOS inverters with $\left(\mathrm{W}_{1} / \mathrm{L}_{1}\right)_{\mathrm{n}}=(2.88 \mathrm{u} / 1.44 \mathrm{u})$, $\left(\mathrm{W}_{1} / \mathrm{L}_{1}\right)_{\mathrm{p}}=(5.76 \mathrm{u} / 1.44 \mathrm{u})$ and $\left(\mathrm{W}_{2} /\right.$ $\left.\mathrm{L}_{2}\right)_{\mathrm{n}}=(0.36 \mathrm{u} / 0.18 \mathrm{u}),\left(\mathrm{W}_{2} / \mathrm{L}_{2}\right)_{\mathrm{p}}=(0.72 \mathrm{u} / 0.18 \mathrm{u})$. Assume $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ and the output of the inverter is loaded by $C_{L}=100 \mathrm{fF}$ capacitance. Calculate the propagation delay t_{P} and check the answers with HSPICE.
d) Repeat part c) sweeping the supply voltage V_{DD} from 0.4 V to 1.8 V (sweep step 0.2 V). Plot the propagation delay t_{p} versus the supply voltage V_{DD} in the same graph. Comment on the results.

Problem 4: Voltage transfer characteristics, Noise Margins

The next figure shows an all NMOS inverter.
a) Calculate $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$, and V_{M} for the new inverter.

Figure 3: An Alternate Inverter Implementation
b) Use HSPICE to obtain the VTC.
c) Calculate $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$, and the noise margins and comment on the results. How can you increase the noise margins and reduce the undefined region?
d) Comment on the differences in the VTCs, robustness and regeneration between this inverter and a standard CMOS inverter.

Problem 5: Inverter Gain and Regions of Operation

The Figure 4 shows a piecewise linear approximation for the VTC. The transition region is approximated by a straight line with a slope equal to the inverter gain at V_{M}. The intersection of this line with the $V_{O H}$ and the $V_{O L}$ lines defines $V_{I H}$ and $V_{\text {IL }}$

Figure 4: A Different Approach to Derive V_{IL} and V_{IH}
a) The noise margins of a CMOS inverter are highly dependent on the sizing ratio, $r=k_{p} / k_{n}$, of the NMOS and PMOS transistors. Use HSPICE with $V_{T n}=\left|V_{T p}\right|$ to determine the value of r that results in equal noise margins? Give a qualitative explanation.
b) Section 5.3.2 of the text uses this piecewise linear approximation to derive simplified expressions for $N M_{H}$ and $N M_{L}$ in terms of the inverter gain. The derivation of the gain is based on the assumption that both the NMOS and the PMOS devices are velocity saturated at V_{M}. For what range of r is this assumption valid? What is the resulting range of V_{M} ?
c) Use the method from section 5.3 .2 to derive an expression for the inverter gain at V_{M} for the case when the sizing ratio is chosen to place V_{M} just below limits of the range where both devices are velocity saturated. What are the operating regions of the NMOS and the PMOS?

Problem 6: Static CMOS Inverter

For this problem use scalable CMOS design rules and assume:
$V_{D D}=2.5 \mathrm{~V}, W_{P} / L=1.25 / 0.25, W_{N} / L=0.375 / 0.25, L=L_{\text {eff }}=0.25 \mu \mathrm{~m}$ (i.e. $x_{d}=0 \mu \mathrm{~m}$), $C_{L}=C_{\text {inv-gate }}, k_{n}{ }^{\prime}=$ $115 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=-30 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n 0}=\left|V_{t p 0}\right|=0.4 \mathrm{~V}, \lambda=0 \mathrm{~V}^{-1}, \gamma=0.4,2\left|\phi_{f}\right|=0.6 \mathrm{~V}$, and $t_{o x}=58 \mathrm{~A}$. Use the Hspice model parameters for parasitic capacitance given below (i.e. $C_{g d 0}, C_{j}, C_{j s w}$), and assume that $V_{S B}=0 \mathrm{~V}$ for all problems except part (e).

Figure 5: CMOS inverter with capacitive load.
\#\# Parasitic Capacitance Parameters (F/m)\#\#
NMOS
$\mathrm{CGDO}=3.11 \times 10^{-10}, \mathrm{CGSO}=3.11 \times 10^{-10}, \mathrm{CJ}=2.02 \times 10^{-3}, \mathrm{CJSW}=2.75 \times 10^{-10}$
PMOS
CGDO $=2.68 \times 10^{-10}, \mathrm{CGSO}=2.68 \times 10^{-10}, \mathrm{CJ}=1.93 \times 10^{-3}, \mathrm{CJSW}=2.23 \times 10^{-10}$
a) What is the V_{m} for this inverter?
b) What is the effective load capacitance $C_{\text {Leff }}$ of this inverter? (include parasitic capacitance, refer to notes for $K_{e q}$ and m.) Hint: You must assume certain values for the source/drain areas and perimeters since there is no layout. For our scalable CMOS process, $\lambda=0.125 \mu \mathrm{~m}$, and the source/drain extensions are 5λ for the PMOS; for the NMOS the source/drain contact regions are $5 \lambda \times 5 \lambda$.
c) Calculate $t_{P H L}, t_{P L H}$ assuming the result of (b) is ' $C_{\text {Leff }}=6.5 \mathrm{fF}$ '. (Assume ideal step input, i.e. $t_{\text {rise }}=t_{\text {fall }}=0$. Do this part by computing the average current used to charge/discharge $C_{\text {Leff }}$.)
d) Find $\left(\mathrm{W}_{\mathrm{p}} / \mathrm{W}_{\mathrm{n}}\right)$ such that $t_{P H L}=t_{P L H}$.
e) Suppose we increase the width of the transistors to reduce the $t_{P H L}, t_{P L H}$. Do we get a proportional decrease in the delay times? Justify your answer.
f) Suppose $V_{S B}=1 \mathrm{~V}$, what is the value of $V_{t n}, V_{t p}, V_{m}$? How does this qualitatively affect $C_{\text {Leff }}$?
g) Use Magic to create a layout for this inverter. Extract the schematic, including parasitic capacitance, from the layout and use HSPICE to simulate the circuit and measure t_{P} and the average power for the following input $V_{i n}$: pulse $\left(0 V_{D D} 5 \mathrm{n} 0.1 \mathrm{n} 0.1 \mathrm{n} 9 \mathrm{n} 20 \mathrm{n}\right)$, as $V_{D D}$ varies from $1 \mathrm{~V}-2.5 \mathrm{~V}$ with 0.25 V interval. $\left[t_{P}=\left(t_{P H L}+t_{P L H}\right) / 2\right]$. Using this data, plot ' t_{P} vs. $V_{D D}$ ', and 'Power vs. $V_{D D}$ '.

The extracted layout will include parasitics so you need not manually include AS, AD, PS, PD in your spice deck, but remember to manually add $C_{L}=6.5 \mathrm{fF}$. Set $V_{S B}=0 \mathrm{~V}$ for this problem. Use the HSPICE model parameters which can be found in " logic025.I".
h) Using HSPICE, simulate the circuit for a set of 'pulse' inputs with rise and fall times of $t_{\text {in_rise,fall }}=1 \mathrm{~ns}$, $2 \mathrm{~ns}, 5 \mathrm{~ns}, 10 \mathrm{~ns}, 20 \mathrm{~ns}$. For each input, measure (1) the rise and fall times $t_{\text {out_rise }}$ and $t_{\text {out_fall }}$ of the inverter output, (2) the total energy lost $E_{\text {total }}$, and (3) the energy lost due to short circuit current $E_{\text {short }}$. For measuring short circuit power, use the technique discussed in class (slide 96, Handout 2). Use the HSPICE model parameters which can be found in "logic025.I"

Using this data, prepare a plot of (1) $\left(t_{\text {out_rise }}+t_{\text {out_fall }}\right) / 2$ vs. $t_{\text {in_rise,fall }}$, (2) $E_{\text {total }}$ vs. $t_{\text {in_rise,fall }}$, (3) $E_{\text {short }}$ vs. $t_{\text {in_rise,fall }}$ and (4) $E_{\text {short }} / E_{\text {total }}$ vs. $t_{\text {in_rise,fall. }}$

Provide simple explanations for:
(i) Why the slope for (1) is less than 1?
(ii) Why $E_{\text {short }}$ increases with $t_{\text {in_rise,fall }}$?
(iii) Why $E_{\text {total }}$ increases with $t_{\text {in_rise,fall }}$?

