Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.432 Stochastic Processes, Detection and Estimation

Problem Set 4
Spring 2004
Issued: Thursday, February 26, 2004
Due: Thursday, March 4, 2004
Reading: This problem set: Sections 1.7, 3.2.5, 3.3.1, 3.3.2
Next: Sections 3.3.3-3.3.6, 3.4
Exam \#1 Reminder: Our first quiz will take place Thursday, March 11,
9 am-11 am. The exam will cover material through Lecture 8 (March 6), as well as the associated Problem Sets 1 through 4.
You are allowed to bring one $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ sheet of notes (both sides). Note that there will be no lecture on March 11.

Problem 4.1

Suppose w, z are scalar random variables, and that

$$
p_{z}(z)=\left\{\begin{array}{ll}
1 / 2 & |z|<1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

You are told that the Bayes least-squares estimate of w given an observation z is

$$
\hat{w}_{\mathrm{BLS}}=-\frac{1}{2} \operatorname{sgn} z= \begin{cases}-1 / 2 & z \geq 0 \\ 1 / 2 & \text { otherwise }\end{cases}
$$

and the associated mean-square estimation error is $\lambda_{\mathrm{BLS}}=1 / 12$. However, you would prefer to use the following ad-hoc estimator

$$
\hat{w}_{\mathrm{AH}}=-z
$$

(a) Is it possible to determine $b\left(\hat{w}_{\mathrm{AH}}\right)=E\left[w-\hat{w}_{\mathrm{AH}}\right]$, the bias of your new estimator, from the information given? If your answer is no, briefly explain your reasoning. If your answer is yes, calculate $b\left(\hat{w}_{\mathrm{AH}}\right)$.
(b) Is it possible to determine $\lambda_{\mathrm{AH}}=E\left[\left(w-\hat{w}_{\mathrm{AH}}\right)^{2}\right]$, the mean-square estimation error obtained using this estimator, from the information given? If your answer is no, briefly explain your reasoning. If your answer is yes, calculate λ_{AH}.

Problem 4.2

Let x, y, z be zero-mean, unit-variance random variables which satisfy

$$
\operatorname{var}[x+y+z]=0
$$

Find the covariance matrix of $(x, y, z)^{T}$; i.e., find the matrix

$$
\left[\begin{array}{lll}
E\left[x^{2}\right] & E[x y] & E[x z] \\
E[y x] & E\left[y^{2}\right] & E[y z] \\
E[z x] & E[z y] & E\left[z^{2}\right]
\end{array}\right]
$$

(Hint: Use vector space ideas.)

Problem 4.3

Suppose $y \sim N\left(0, \sigma^{2}\right)$ and that the Bayes least-squares estimate of a related random variable x based on y is

$$
\hat{x}_{\mathrm{BLS}}(y)=y^{2} .
$$

(a) Could x and y be jointly Gaussian? Explain briefly.
(b) Determine $\hat{x}_{\text {LLS }}(y)$, the linear least-squares estimate of x based on y (i.e., your estimator should be of the form $\left.\hat{x}_{\text {LLS }}(y)=\alpha y+\beta\right)$.
(c) If the error variance of your estimator in (b) is $\lambda_{\mathrm{LLS}}=3 \sigma^{4}$, determine λ_{BLS}.

Note: Recall that if v is a Gaussian random variable with zero mean and variance σ_{v}^{2}, then

$$
E\left[v^{n}\right]= \begin{cases}\left(\sigma_{v}\right)^{n} \cdot 1 \cdot 3 \cdot 5 \cdots(n-1), & n \text { even } \\ 0, & n \text { odd }\end{cases}
$$

Problem 4.4

Consider the communication system shown below. The message x is a $N\left(0, \sigma_{x}^{2}\right)$ random variable. The transmitter output is $h x$, and the receiver input is

$$
y=h x+v
$$

where v is an $N(0, r)$ random variable that is statistically independent of x.

Figure 3-1
Suppose the transmitter is subject to intermittent failure, i.e., h is a random variable taking the values 0 and 1 with probabilities $1-p$ and p, respectively. Assume h, x, and v are mutually independent.
(a) Find $\hat{x}_{\text {LLS }}(y)$, the linear least-squares estimate of x based on observation of y, and $\lambda_{\text {LLS }}$, its resulting mean-square estimation error.
(b) Prove that

$$
E[x \mid y=y]=\sum_{i=0}^{1} \operatorname{Pr}[h=i \mid y=y] E[x \mid y=y, h=i]
$$

(c) Find $\hat{x}_{\mathrm{BLS}}(y)$, the Bayes least-squares estimate of x based on observation of y.

Problem 4.5

Let

$$
\mathbf{z}=\left[\begin{array}{l}
w \\
v
\end{array}\right]
$$

be a 2 -dimensional Gaussian random vector with mean $\mathbf{m}_{\mathbf{z}}$ and covariance matrix $\boldsymbol{\Lambda}_{\mathbf{z}}$

$$
\mathbf{m}_{\mathbf{z}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] . \quad \boldsymbol{\Lambda}_{\mathbf{z}}=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]
$$

Let x be a Gaussian random variable with mean $m_{x}=2$ and variance $\lambda_{x}=8$. Assume x and \mathbf{z} are statistically independent. The random variable y is related to x and \mathbf{z} as follows

$$
y=(2+w) x+v
$$

(a) Find $\hat{x}_{L L S}(y)$, the linear least-squares estimate of x based on observation of y.
(b) Determine $\lambda_{L L S}=E\left[\left(x-\hat{x}_{L}(y)\right)^{2}\right]$, the resulting mean-square estimation error.

Problem 4.6

Let x and y be random variables such that the random variable x is exponential, and, conditioned on knowledge of x, y is exponentially distributed with parameter x, i.e.,

$$
\begin{aligned}
p_{x}(x) & =\frac{1}{a} e^{-x / a} u(x) \\
p_{y \mid x}(y \mid x) & =x e^{-x y} u(y)
\end{aligned}
$$

where

$$
u(t)=\left\{\begin{array}{cc}
1 & \text { if } t \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Determine $\hat{x}_{\mathrm{BLS}}(y), \lambda_{x \mid y}(y)=E\left[\left[\hat{x}_{\mathrm{BLS}}(y)-x\right]^{2} \mid y=y\right]$, and $\lambda_{\mathrm{BLS}}=E\left[\left[\hat{x}_{\mathrm{BLS}}(y)-x\right]^{2}\right]$.
(b) Determine $\hat{x}_{\mathrm{MAP}}(y)$, the MAP estimate of x based on observation of y. Determine the bias and error variance for this estimator. (Recall that the bias is $\left.E\left[\hat{x}_{\mathrm{MAP}}(y)-x\right].\right)$
(c) Find $\hat{x}_{\text {LLS }}(y)$, the linear least-squares estimate of x based on observation of y, and λ_{LLS}, the resulting mean-square estimation error.

Problem 4.7 (practice)

(a) Let \mathbf{d} be a random vector. Let x, y, w be random variables to be estimated based on d. Furthermore, $w=x+y$.
(i) Show that

$$
\hat{w}_{\mathrm{BLS}}(\mathbf{d})=\hat{x}_{\mathrm{BLS}}(\mathbf{d})+\hat{y}_{\mathrm{BLS}}(\mathbf{d}) .
$$

(ii) Show that

$$
\hat{w}_{\mathrm{LLS}}(\mathbf{d})=\hat{x}_{\mathrm{LLS}}(\mathbf{d})+\hat{y}_{\mathrm{LLS}}(\mathbf{d}) .
$$

(b) Let x be a zero-mean scalar random variable. Let $y[0], \ldots, y[N]$ be a sequence of zero-mean scalar random variables. At each time k, the value of $y[k]$ is revealed to the estimator. At each time k, the estimator must construct the linear least-squares estimate of x based on all the data it has seen up to that point in time. That is, at time k, the estimator must construct

$$
\hat{x}[k] \triangleq \hat{x}_{\mathrm{LLS}}(y[0], \ldots, y[k])
$$

Show that

$$
\hat{x}[k]=\hat{x}[k-1]+K[k](y[k]-\hat{y}[k \mid k-1]), \quad k=1, \ldots, N
$$

where $\hat{y}[k \mid k-1]$ is the linear least-squares estimate of $y[k]$ based on $y[0], \ldots, y[k-$ 1], and

$$
K[k]=\frac{E[x(y[k]-\hat{y}[k \mid k-1])]}{E\left[(y[k]-\hat{y}[k \mid k-1])^{2}\right]} .
$$

(Hint: Use orthogonality.)
(c) Let $y[n]=x+w[n]$ for $n=0, \ldots, N$, where $x, w[0], \ldots, w[N]$ are zero-mean mutually independent random variables. Also, for $n=0, \ldots, N$, var $w[n]=\sigma^{2}$. Letting $\hat{x}[n]$ be defined as in (b), show that

$$
\begin{aligned}
\hat{x}[k] & =\hat{x}[k-1]+K[k](y[k]-\hat{x}[k-1]) \\
K[k] & =\frac{E\left[(x-\hat{x}[k-1])^{2}\right]}{E\left[(x-\hat{x}[k-1])^{2}\right]+\sigma^{2}} .
\end{aligned}
$$

Why might this recursive form of the estimator be convenient?

