Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.432 Stochastic Processes, Detection and Estimation

Problem Set 8

Spring 2004
Issued: Thursday, April 8, 2004
Due: Thursday, April 15, 2004
Reading: For this problem set: Chapter 5, Sections 6.1 and 6.3
Next: Chapter 6, Sections 7.1 and 7.2
Exam \#2 Reminder: Our second exam will take place Thursday, April 22, 2004, 9am - 11am. The exam will cover material through Lecture 16 (April 8) as well as the associated homework through Problem Set 8 .
You are allowed to bring two $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ sheets of notes (both sides).
Note that there will be no lecture on April 22.

Problem 8.1

Consider the continuous-time process

$$
x(t)=\sum_{i=1}^{N} x_{i} s_{i}(t), \quad 0 \leq t \leq T
$$

where the x_{i} are zero-mean and jointly Gaussian with

$$
E\left[x_{i} x_{j}\right]=\mu_{i j}
$$

and the $s_{i}(t)$ are linearly independent, with

$$
\int_{0}^{T} s_{n}(t) s_{m}(t) d t=\rho_{m n}
$$

(a) Calculate $K_{x x}(t, \tau)$.
(b) Is $K_{x x}(t, \tau)$ positive definite? Justify your answer.
(c) Find a matrix \mathbf{H} whose eigenvalues are precisely the nonzero eigenvalues of the process $x(t)$. Determine an expression for the elements of \mathbf{H} in terms of $\mu_{i j}$ and $\rho_{m n}$.
Hint: let

$$
\phi(t)=\sum_{i=1}^{N} b_{i} s_{i}(t)
$$

and introduce the vector notation

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{N}
\end{array}\right]^{T} .
$$

Show that if $\phi(t)$ is an eigenfunction of the process $x(t)$ with eigenvalue λ, then

$$
\mathbf{H b}=\lambda \mathbf{b} .
$$

Also explain why the eigenfunctions associated with nonzero eigenvalues of $x(t)$ must have this form.

Problem 8.2

Consider a zero-mean, continuous-time process $x(t)$ with

$$
K_{x x}(t, \tau)=P e^{-\alpha|t-\tau|}
$$

where $P, \alpha>0$. We would like to consider the Karhunen-Loève expansion of $x(t)$ over the time interval $[-T, T]$.
(a) Write the integral equation that an eigenfunction $\phi(t)$ and the associated eigenvalue λ must satisfy.
(b) Derive a differential equation for $\phi(t)$ from the integral equation determined in part (a).
(c) Show that $\lambda=0$ and $\lambda=2 P / \alpha$ are not eigenvalues.

Problem 8.3

Consider the random process

$$
z(t)=x(t)+v(t)
$$

where $\boldsymbol{x}(t)$ and $\boldsymbol{v}(t)$ are independent, zero-mean (real) processes, with

$$
K_{v v}(t, \tau)=\sigma_{v}^{2} \delta(t-\tau),
$$

and

$$
K_{x x}(t, \tau)=\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(t) \phi_{i}(\tau)
$$

where the $\left\{\phi_{i}(t)\right\}$ are real and form a complete orthonormal set in $[0, T]$. Consider

$$
y=\int_{0}^{T} z(t) g(t) d t
$$

where $g(t)$ is any real deterministic function. Let $\left\{g_{i}\right\}_{i=1}^{\infty}$ denote the coefficients of $g(t)$ in the orthonormal expansion in terms of the basis $\left\{\phi_{i}(t)\right\}_{i=1}^{\infty}$.
(a) Find an expression for $E\left[y^{2}\right]$ in terms of $g(t), K_{x x}(t, \tau)$ and σ_{v}^{2}.
(b) Express $E\left[y^{2}\right]$ in terms of $\lambda_{i}, \sigma_{v}^{2}$, and g_{i}.
(c) Suppose that $g(t)$ is constrained so that

$$
\int_{0}^{T} g(t) w(t) d t=1
$$

where $w(t)$ is a specified weighting function. Find the function $g(t)$ that minimizes $E\left[y^{2}\right]$, and the associated minimum value of $E\left[y^{2}\right]$.
Hint: You may find the orthonormal expansion of $w(t)$ in terms of the basis $\left\{\phi_{i}(t)\right\}$ useful.

Problem 8.4

Let $x(t)$ be a zero-mean wide-sense stationary stochastic process with spectrum

$$
S_{x x}(j \omega)= \begin{cases}1+\cos (10 \omega), & |\omega| \leq \pi / 10 \\ 0, & |\omega|>\pi / 10\end{cases}
$$

where ω is in $\mathrm{rad} / \mathrm{sec}$. Consider the C / D system depicted in Fig. 3-1. T denotes the sampling period, i.e., $y[n]=x(n T)$.

Figure 3-1
(a) Assume that the sampling period is $T=10 \mathrm{sec}$. Determine $S_{y y}\left(e^{j \omega}\right)$ and $K_{y y}[n]$. Is it possible to reconstruct $x(t)$ from $y[n]$ in the mean-square sense? Show how the reconstruction can be achieved.
(b) Assume that the sampling period is $T=20 \mathrm{sec}$. Determine $S_{y y}\left(e^{j \omega}\right)$ and $K_{y y}[n]$.
(c) (practice) Continue to assume that $T=20 \mathrm{sec}$. Show that no linear function of the $y[n]$'s can reconstruct $x(t)$ in the mean-square sense, except for $x(t)$ at the sample times $t=n T$. (Hint: Consider properties of the optimal linear estimate of $x(t)$ based on a finite number of the $y[n]$'s.)

Problem 8.5 (practice)

Let $x(t)$ be a zero-mean, wide-sense stationary random process with known autocorrelation function $R_{x x}(t)$. Suppose that

$$
R_{x x}(n T)=R_{x x}(0) \delta[n]
$$

for a given T. Let $y[n]$ be a discrete random process formed by sampling $x(t)$ with period T, i.e.,

$$
y[n]=x(n T)
$$

We wish to estimate $x(t)$ from $y[n]$ using an interpolation filter $h(t)$. That is,

$$
\hat{x}(t)=\sum_{n=-\infty}^{\infty} y[n] h(t-n T) .
$$

Suppose $h(t)$ is constrained to be zero outside the interval $[0, M T)$, where M is a given integer. Find the function $h(t)$ that minimizes

$$
J=E\left[\int_{-L}^{L}(\hat{x}(t)-x(t))^{2} d t\right]
$$

for arbitrarily large L. For the optimum $h(t)$, what is $E\left[(\hat{x}(t)-x(t))^{2}\right]$? Hint: Try to pose the problem as a linear least squares estimation problem.

Problem 8.6

Suppose $x(t)$ is a random process defined as follows

$$
x(t)=z[n], \quad n<t \leq n+1, \quad n=\ldots,-1,0,1,2, \ldots
$$

where $z[n]$ is a zero-mean wide-sense stationary sequence with

$$
K_{z z}[k]=\left\{\begin{array}{ll}
3, & k=0 \\
1, & k= \pm 1 \\
0, & \text { otherwise }
\end{array} .\right.
$$

(a) Determine the covariance function $K_{x x}(t, s)$ for $0<s \leq t<2$.
(b) Construct a Karhunen-Loève expansion for $x(t)$ over the interval $0<t<2$, i.e., determine the eigenvalues and eigenfunctions of the covariance function corresponding to this interval.

Problem 8.7

A random process $x(t)$ is defined as follows on the interval $0<t<T$:

$$
x(t)= \begin{cases}z, & t<y \\ 0, & t \geq y\end{cases}
$$

where z is a zero-mean, unit-variance random variable and y is a random variable that is independent of z. A typical sample path is sketched below.

The covariance function for $x(t)$ is given by

$$
K_{x x}(t, s)=1-\frac{\max (t, s)}{T}, \quad 0<s, t<T
$$

(a) Determine and make a fully labelled sketch of $p_{y}(y)$.
(b) Determine a differential equation satisfied by the eigenfunctions of the process.
(c) Determine a finite upper bound on the largest eigenvalue for the process, i.e., determine M such that

$$
\lambda_{n} \leq \lambda_{\max } \leq M<\infty
$$

(d) Is it possible to express $x(t)$ on $0<t<T$ in the form

$$
x(t)=\sum_{n=1}^{N} x_{n} \phi_{n}(t),
$$

where the x_{n} are uncorrelated random variables and the functions $\phi_{n}(t)$ are an orthonormal set of functions with N finite? Explain.

