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The following are two fundamental probabilistic models that can serve as 

building blocks for more complex models: 

(a) A model of an infinite sequence of fair coin tosses that assigns equal proba-

bility, 1/2n , to every possible sequence of length n. 

(b) The uniform distribution on [0, 1], which assigns probability b−a to every 

interval [a, b] ⊂ [0, 1]. 

These two models are often encountered in elementary probability and used 

without further discussion. Strictly speaking, however, we need to make sure 

that these two models are well-posed, that is, consistent with the axioms of prob-

ability. To this effect, we need to define appropriate σ-algebras and probability 

measures on the corresponding sample spaces. In what follows, we describe the 

required construction, while omitting the proofs of the more technical steps. 

EXTENDING MEASURES FROM ALGEBRAS TO σ-ALGEBRAS 

The general outline of the construction we will use is as follows. We are in-

terested in defining a probability measure with certain properties on a given 
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measurable space ( , F). We consider a smaller collection, F0 ⊂ F , of sub-

sets of , which is an algebra, and on which the desired probabilities are easy 

to define.1 Furthermore, we make sure that F0 is rich enough, so that the σ-

algebra it generates is the same as the desired σ-algebra F . We then extend the 

definition of the probability measure from F0 to the entire σ-algebra F . This is 

possible, under a few conditions, by virtue of the following fundamental result 

from measure theory due to Carethéodory. 

We begin by asking the following question: Is probability measure on a 

σ-algebra F = σ(C) completely determined by its values on the generating 

collection C? The answer is no as the next exercise demonstrates. 

Exercise 1. Let = {H, T }2 (two coin tosses). Consider two probability measures: 

under P1 two fair coins are tossed independently, while under P2 the second coin toss 
� 

is just taken to be equal to the first. Let C = {HH, HT }, {HH, T H} . Show that 

σ(C) = 2 and that P1 = P2 on C. 

However, it turns out that probability measures coinciding on an algebra of 

sets must necessarily coincide on the σ-algebra generated by it. 

Proposition 1. Let A be an algebra of subsets of and λ, µ probability 

measures on F = σ(A). If λ and µ agree on A then they agree on all of F . 

Proof. Define 

L = {A ∈ F : µ(A) = λ(A)}. 

Take a sequence of sets An ∈ L with An ր A. By Theorem 1 from Lecture 

1 (continuity of σ-additive measures) we have µ(A) = λ(A) and hence A ∈ 
L. Same argument applies to decreasing sequences An ց A. Therefore L is 

a monotone class, containing the algebra A. By the monotone class theorem 

(Theorem 2 from Lecture 1) L = σ(A). 
Remark. One frequently constructs σ-algebras from p-systems. A collec-

tion of subsets C is called a p-system if it is closed under finite intersections. 

In the next lecture we will show that measures coinciding on a p-system also 

coincide on the algebra generated by it. By virtue of Proposition 1 they will 

then also coincide on the σ-algebra generated by the p-system. In short: it is 

sufficient to verify agreement of measures on any generating p-system. 

Remark. Proposition remains true if we replace probability measures with 

finite or even σ-finite measures (A measure µ is called σ-finite if the set can 

be partitioned into a countable union of sets, each of which has finite measure.). 

1An algebra (or a field) is a collection of subsets of the sample space that includes the empty 

set closed under taking complements and under finite unions. 
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“Wilder” measures, however, may violate the proposition: E.g. consider an 
Sn algebra of finite unions (ai, bi] on (0, 1]. The σ-algebra generated by this i=1 

algebra is the Borel one on (0, 1]. Let λ(A) and µ(A) be equal to cardinality 

and twice the cardinality of A, respectively. The on the algebra of finite unions 

they coincide (giving infinite measure to any non-empty set), while being clearly 

different. 

Theorem 1. (Carath´ be an algebra eodory’s extension theorem) Let F0 

of subsets of a sample space , and let F = σ(F0) be the σ-algebra that 

it generates. Suppose that P0 is a mapping from F0 to [0, 1] that satisfies 

P0( ) = 1, as well as countable additivity on F0. 

Then, P0 can be extended uniquely to a probability measure on ( , F). 
That is, there exists a unique probability measure P on ( , F) such that 

P(A) = P0(A) for all A ∈ F0. 

Remarks: 

(a) The proof of the extension theorem is not too long; see, e.g., Appendix A of 

[Williams]. The key steps are: 

• Define a σ-subadditive set-function λ∗ : 2 → [0, 1] (called an outer 

measure) 
 


∞



X [

λ ∗ (E) , inf P(Aj ) : Aj ∈ F , E ⊂ Aj . 
 

j=1 j 

• Define a collection of sets 

F̄ , {E : λ ∗ (F ) = λ ∗ (F ∩ E) + λ ∗ (F ∩ Ec) ∀F ⊂ }. 

¯ • Show that F is a σ-algebra containing F0 and that λ∗ is a probability 

measure on it, which coincides with P on F0. Then restrict from F̄  to 

F . 

(b) Although the extension theorem is a powerful result, the key step in con-

structing probability measures is verification of the countable additivity prop-

erty of P0 on F0. By Theorem 1 from Lecture 1, it suffices to verify that 

if {Ai} is a decreasing sequence of sets in F0 and if ∩∞ Ai is empty, then i=1 

limn→∞ P0(Ai) = 0. We will soon see how such a verification is done. 

In the next two sections, we consider the two models of interest. We define 

appropriate algebras, define probabilities for the events in those algebras, and 

then use the extension theorem to obtain a probability measure. 
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2 COIN TOSSES: A “UNIFORM” MEASURE ON {0, 1}∞

Consider an infinite sequence of fair coin tosses. We wish to construct a proba-

bilistic model of this experiment under which every possible sequence of results 

of the first n tosses has the same probability, 1/2n . 

The sample space for this experiment is the set {0, 1}∞ of all infinite se-

quences ω = (ω1, ω2, . . .) of zeroes and ones (we use zeroes and ones instead 

of heads and tails). 

First, we want to argue that it is not possible to define a good “uniform” 

measure on the collection of all subsets 2 . This will justify the whole idea of 

introducing the concept of a σ-algebra. Let us try to understand what exactly 

we mean by “uniform”. Fix an infinite string b ∈ {0, 1}∞ . Let us introduce the 

modulo-2 addition (XOR) as: 

ω ⊕ b = (ω1 + b1, . . . , ωn + bn, . . .)mod2 , 

and similarly for sets 

A ⊕ b = {ω ⊕ b : ω ∈ A} . 

Informally, a realization of coin tosses is in the set A ⊕ b iff it is in A after 

we invert every coordinate j for which bj = 1. It is natural to require that our 

measure be such that 

P[A ⊕ b] = P[A] . (1) 

(In mathematical terms, we want P to be translation invariant.) 

Let us show that it is not possible to define a σ-additive P on all of 2 so 

that (1) holds. Indeed, suppose such a P existed. Then define an equivalence 

relation on : ω ∼ ω ′ if these binary sequences disagree in at most finitely 

many places. Let A be a set of representatives, one for each equivalence class; 

and let B be the equivalence class of the 0-sequence. It is clear that 

[

= ω ⊕ A.
ω∈B 

On the other hand since B is countable and the sets in the union are disjoint: 

X X

1 = P[ ] = P[ω ⊕ A] = P[A],
ω∈B ω∈B 

which is impossible for any choice of P[A]. 
In conclusion, we showed that “uniform” (in the sense of (1)) probability 

measure on must necessarily be defined on a σ-algebra that may not include 

A and hence be strictly smaller than 2 . We construct such a σ-algebra next. 
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2.1 An algebra and a σ-algebra of subsets of {0, 1}n

Let Fn be the collection of events whose occurrence can be decided by looking 

at the results of the first n tosses. For example, the event {ω | ω1 = 1 and ω2 =6 
ω4} belongs to F4 (as well as to Fk for every k ≥ 4). 

Let B be an arbitrary (possibly empty) subset of {0, 1}n . Consider the set 

A = {ω ∈ {0, 1}∞ | (ω1, ω2, . . . , ωn) ∈ B}. 

We can express A ⊂ {0, 1}∞ in the form A = B × {0, 1}∞ . This is simply 

saying that any sequence in A can be viewed as a pair consisting of a n-long 

sequence that belongs to B, followed by an arbitrary infinite sequence. The 

event A belongs to Fn, and all elements of Fn are of this form, for some A. It 

is easily verified that Fn is a σ-algebra. 

Exercise 2. Provide a formal proof that Fn is a σ-algebra. 

The σ-algebra Fn, for any fixed n, is too small; it can only serve to model 

the first n coin tosses. We are interested instead in sets that belong to Fn, for 

arbitrary n, and this leads us to our main definition: 

∞
[

F0 = Fn = {A : ω ∈ A ⇐⇒ (ω1, . . . , ωn) ∈ B, n ≥ 0, B ∈ {0, 1}n} ,
n=1 

? 
i.e. F0 is the collection of all those sets A for which membership ω ∈ A
can be determined on the basis of inspecting only finitely many coordinates 

2 (ω1, . . . , ωn) for some n ≥ 0. 

Example. Let An = {ω | ωn = 1}, the event that the nth toss results in a “1”. Note 

that An ∈ Fn. Let A = i=1An, which is the event that there is at least one “1” in ∪1 

the infinite toss sequence. The event A does not belong to Fn, for any n. (Intuitively, 

having observed a sequence of n zeroes does not allow us to decide whether there will 

be a subsequent “1” or not.) Consider also the complement of A, which is the event that 

the outcome of the experiment is an infinite string of zeroes. Once more, we see that Ac

does not belong to F0. 

The preceding example shows that F0 is not a σ-algebra. On the other hand, 

it can be verified that F0 is an algebra. 

Exercise 3. Prove that F0 is an algebra. 

2Warning: the union [1 
i=1Fi = F0 is not the same as the collection of sets of the form 

[1

i=1Ai, for Ai 2 Fi. For an illustration, if F1 = {{a}, {b, c}} and F2 = {{d}}, then F1 [ 
F2 = {{a}, {b, c}, {d}}. Note that {b, c} [ {d} = {b, c, d} is not in F1 [ F2. 
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We would like to have a probability model that assigns probabilities to all of 

the events in Fn, for every n. This means that we need a σ-algebra that includes 

F0. On the other hand, we would like our σ-algebra to be as small as possible, 

i.e., contain as few subsets of {0, 1}n as possible, to minimize the possibility 

that it includes pathological sets to which probabilities cannot be assigned. This 

leads us to define F as the sigma-algebra σ(F0) generated by F0. 

2.2 A probability measure on {0, 1}∞ , F) 

We start by defining a finitely additive function P0 on the algebra F0 that also 

satisfies P0({0, 1}∞) = 1. This is accomplished as follows. Every set A in F0 

is of the form B × {0, 1}∞ , for some n and some B ⊂ {0, 1}n . We then let 

P0(A) = |B|/2n .3 Note that the event {ω1, ω2, . . . , ωn}× {0, 1}n , which is the 

event that the first n tosses resulted in a particular sequence {ω1, ω2, . . . , ωn}, 

is assigned probability 1/2n . In particular, all possible sequences of length are 

assigned equal probability, as desired. 

Before proceeding further, we need to verify that the above definition is 

consistent. Note that same set A can belong to Fn for several values of n. We 

therefore need to check that when we apply the definition of P0(A) for different 

choices of n, we obtain the same value. Indeed, suppose that A ∈ Fm, which 

implies that A ∈ Fn, for n > m. In this case, A = B ×{0, 1}∞ = C ×{0, 1}∞ , 

where B ⊂ {0, 1}n and C ⊂ {0, 1}m . Thus, B = C × {0, 1}n−m , and |B| = 
|C| · 2n−m . One application of the definition yields P0(A) = |B|/2n , and 

another yields P0(A) = |C|/2m . Since |B| = |C| · 2n−m , they both yield the 

same value. 

It is easily verified that P0( ) = 1, and that P0 is finitely additive: if 

A1, A2 ⊂ Fn are disjoint, then P(A1 ∪ A2) = P(A1) + P(A2). 
It turns out that P0 is also countably additive on F0. 

Lemma 1. P0 is σ-additive on F0 

Proof. According to Theorem 1 of Lecture 1 it is sufficient to show that 

An ց Ø ⇒ P(An) → 0.

In fact, we will show that 

An ց Ø ⇒ ∃N ≥ 1 ∀n ≥ N : An = Ø . (2) 

3For any set A, |A| denotes its cardinality, the number of elements it contains. 
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Let us call a b ∈ {0, 1}m a “great prefix” if there exists infinitely many n ≥ 1 
with the property that An contains some ω with ωi = bi for all i = 1, . . . ,m. 

Note that AN = Ø for some N ≥ 1 is equivalent to stating that b = Ø (zero-

length prefix) is not great. So assume, to arrive at a contradiction, that b = Ø is 

great. Notice that if b is a great prefix than either b0 or b1 (juxtaposition) must 

be great too. Indeed, we can split the infinitely many An’s which contain ω with 

b as prefix in two groups depending on whether ωm+1 equals zero or one. One 

of these groups must be infinite. 

In other words, any great prefix can be extended by one more digit. In this 

way by induction we can construct an infinite sequence b = (b1, . . . , bn, . . .) 
with the property that any initial segment if it is a great prefix. Now we show 

that b ∈ Am for any m. Indeed, by definition of F0 there must exist n such 

that Am ∈ Fn. Consider prefix (b1, . . . , bn). It is great by construction and thus 

there must exist ω ∈ Aℓ such that ωi = bi for all i ≥ ℓ. In fact there are infinitely 

many such ℓ’s and so in particular there is an ℓ ≥ m. Hence, from Aℓ ⊂ Am we 

conclude ω ∈ Am. But now recall that Am ∈ Fn and since ω and b share the 

initial n values, we must also have b ∈ Am. In all, we have shown b ∈ Am for 

all m and thus ∩Am 6= Ø contradicting the assumption. 

(Here is a “fancy” proof for analysts: The space {0, 1}∞ is compact in the 

product topology (Tikhonov’s theorem) and thus An is a decreasing sequence of 

compacts.) 

We can now invoke the Extension Theorem and conclude that there exists 

a unique probability measure on F , the σ-algebra generated by F0, that agrees 

with P0 on F0. This probability measure assigns equal probability, 1/2n , to 

every possible sequence of length n, as desired. This confirms that the intuitive 

process of an infinite sequence of coin flips can be captured rigorously within 

the framework of probability theory. 

Exercise 4. Consider the probability space ({0, 1}1 , F , P). Let A be the set of all 
infinite sequences ω for which ωn = 0 for every odd n. 

(a) Establish that A /∈ F0, but A ∈ F . 

(b) Compute P(A). 

Exercise 5. Show that P is translation invariant (1) for all ω and A ∈ F . (Hint: the 

monotone class theorem may be helpful.) 

LEBESGUE MEASURE ON [0, 1] AND ON R 

In this section, we construct the uniform probability measure on [0, 1], also 

known as Lebesgue measure. Under the Lebesgue measure, the measure as-
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signed to any subset of [0, 1] is meant to be equal to its length. While the defini-

tion of length is immediate for simple sets (e.g., the set [a, b] has length b − a), 

more general sets present more of a challenge. 

We start by considering the sample space = (0, 1], which is slightly more 

convenient than the sample space [0, 1], though in the end it will result in es-

sentially the same probability space. Similarly to the case of coin-tosses, a 

translation-invariant probability measure defined on all subsets of does not 

exists, see Section 6. Thus, our first goal is to define a proper σ-algebra. 

3.1 A σ-algebra and an algebra of subsets of (0, 1] 

Consider the collection C of all intervals [a, b] contained in (0, 1], and let F be 

the σ-algebra generated by C. As mentioned in the Lecture 1 notes, this is called 

the Borel σ-algebra, and is denoted by B. Sets in this σ-algebra are called Borel 

sets or Borel measurable sets. 

Any set that can be formed by starting with intervals [a, b] and using a count-

able number of set-theoretic operations (taking complements, or forming count-

able unions and intersections of previously formed sets) is a Borel set. For exam-

ple, it can be verified that single-element sets, {a}, are Borel sets. Furthermore, 

intervals (a, b] are also Borel sets since they are of the form [a, b] \ {a}. Every 

countable set is also a Borel set, since it is the union of countably many single-

element sets. In particular, the set of rational numbers in (0, 1], as well as its 

complement, the set of irrational numbers in (0, 1], is a Borel set. While Borel 

sets can be fairly complicated, not every set is a Borel set; see Sections 5-6. 

As usual, directly defining a probability measure for all Borel sets is difficult, 

so we start by considering a smaller collection, F0, of subsets of (0, 1]. We let 

F0 consist of the empty set and all sets that are finite unions of intervals of the 

form (a, b]. In more detail, if a set A ∈ F0 is nonempty, it is of the form 

A = (a1, b1] ∪ · · · ∪ (an, bn], 

where 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ 1 and n ∈ N. 

Lemma 1. We have σ(F0) = σ(C) = B. 

Proof. We have already argued that every interval of the form (a, b] is a Borel 

set. Hence, a typical element of F0 (a finite union of such intervals) is also a 

Borel set. Therefore, F0 ⊂ B, which implies that σ(F0) ⊂ σ(B) = B. (The 

last equality holds because B is already a σ-algebra and is therefore equal to the 

smallest σ-algebra that contains B.) 
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Consider 0 < a < b ≤ 1 and take a sequence of rationals an ր a and 

bn ց b. Then 

[a, b] = ∩∞ (an, bn] n=1 

Since (an, bn] ∈ F0 it follows that [a, b] ∈ σ(F0). Thus, C ⊂ σ(F0), which 

implies that 
� �

B = σ(C) ⊂ σ σ(F0) = σ(F0) ⊂ B.

(The second equality holds because the smallest σ-algebra containing σ(F0) 
is σ(F0) itself.) The first equality in the statement of the proposition follows. 

Finally, the equality σ(C) = B is just the definition of B. 

Lemma 2. 

(a) The collection F0 is an algebra. 

(b) The collection F0 is not a σ-algebra. 

Proof. 

(a) By definition, Ø ∈ F0. Note that Øc = (0, 1] ∈ F0. More generally, if A is 

of the form A = (a1, b1]∪· · ·∪(an, bn], its complement is (0, a1]∪(b1, a2]∪
· · · ∪ (bn, 1], which is also in F0. Furthermore, the union of two sets that 

are unions of finitely many intervals of the form (a, b] is also a union of 

finitely many such intervals. For example, if A = (1/8, 2/8] ∪ (4/8, 7/8] 
and B = (3/8, 5/8], then A ∪ B = (1/8, 2/8] ∪ (3/8, 7/8]. 

(b) To see that F0 is not a σ-algebra, note that (0, 1 − 2−n] ∈ F0, for every 

n ∈ N, but the union of these sets, which is (0, 1), does not belong to 

F0. 

3.2 The uniform measure on (0, 1] 

For every A ∈ F0 of the form 

A = (a1, b1] ∪ · · · ∪ (an, bn], 

we define 

P0(A) = (b1 − a1) + · · · + (bn − an), 
� �

which is its total length. Note that P0( ) = P (0, 1] = 1. Also P0 is finitely 

additive. Indeed if A1, . . . , An are disjoint finite unions of intervals of the form 

(a, b], then A = ∪1≤i≤nAi is also a finite union of such intervals and its total 

length is the sum of the lengths of the sets Ai. 
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Lemma 2. P0 is σ-additive on F0 

Proof. (Optional) First notice the following: For A ∈ F0 and any ǫ > 0 
there exists a closed subset C ⊂ A such that 

A = C ∪ E , 

where E ∈ F0 and P0(E) ≤ ǫ. For the basic interval (a, b] this follows by 

writing 

(a, b] = [a − ǫ, b] ∪ (a, a − ǫ] 

and for other sets in F0 similarly. 

Next consider An ց Ø with An ∈ F0. Fix arbitrary ǫ0 > 0 and let ǫn = 
ǫ02

−n . Select decompositions as above 

An = Cn ∪ En, P0(En) ≤ ǫn . 

Tn Sets Cn are not necessarily nested, so define Fn = k=1 Ck and notice that 

n 
[

An \ Fn ⊆ Ek , (3) 

k=1 

which is shown by induction. Suppose that all Fn are non-empty and select in 

each Fn an arbitrary element xn. Note that xn ∈ Fm for all m ≤ n. By com-

pactness of F1 the sequence xn must contain a subsequence xni converging to 
∗ some point x . By the preceding observation for every fixed m and all suffi-

∗ ciently large i we have xni ∈ Fm, and thus x ∈ Fm for all m. This contradicts 

the fact that ∩Fm = Ø. We conclude that there must exist some N such that 

FN = Ø. 

Consequently, from (3) we get that 

N 
[

AN ⊆ Ek

k=1 

implying by the union bound that 

N N 
X X

P0(AN ) ≤ P0(Ek) = ǫ0 2−k ≤ ǫ0 
k=1 k=1 

Thus, for any ǫ0 > 0 we have 

lim P0(An) ≤ ǫ0 
n→∞ 
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implying the limit is actually zero. 

We can now apply the Extension Theorem and conclude that there exists a 

probability measure P, called the Lebesgue or uniform measure, defined on the 
� � 

entire Borel σ-algebra B, that agrees with P0 on F0. In particular, P (a, b] = 
b − a, for every interval (a, b] ⊂ (0, 1]. 

By augmenting the sample space to include 0, and assigning zero proba-

bility to it, we obtain a new probability model with sample space = [0, 1]. 
(Exercise: define formally the sigma-algebra on [0, 1], starting from the σ-

algebra on (0, 1].) 

Exercise 6. Let A be the set of irrational numbers in [0, 1]. Show that P(A) = 1. 

Example. Let A be the set of points in [0, 1] whose decimal representation contains 

only odd digits. (We disallow decimal representations that end with an infinite string of 

nines. Under this condition, every number has a unique decimal representation.) What 

is the Lebesgue measure of this set? 

Observe that A = ∩1 An, where An is the set of points whose first n digits are n=1 

odd. It can be checked that An is a disjoint union of 5n intervals, each with length 

1/10n . Thus, P(An) = 5n/10n = 1/2n . Since A ⊂ An, we obtain P(A) ≤ P(An) = 

1/2n . Since this is true for every n, we conclude that P(A) = 0. 

Exercise 7. Let A be the set of points in [0, 1] whose decimal representation contains 
at least one digit equal to 9. Find the Lebesgue measure of that set. 

Note that there is nothing special about the interval (0, 1]. For example, if 
� � 

we let = (c, d], where c < d, and if (a, b] ⊂ (c, d], we can define P0 (a, b] = 
(b − a)/(d − c) and proceed as above to obtain a uniform probability measure 

on the set (c, d], as well as on the set [c, d]. 
On the other hand, a “uniform” probability measure on the entire real line, 

R, that assigns equal probability to intervals of equal length, is incompatible 

with the requirement P( ) = 1. What we obtain instead, in the next section, is 

a notion of length which becomes infinite for certain sets. 

3.3 The Lebesgue measure on R 

Let = R. We first define a σ-algebra of subsets of R. This can be done in 

several ways. It can be verified that the three alternatives below are equivalent. 

(a) Let C be the collection of all intervals of the form [a, b], and let B = σ(C) 
be the σ-algebra that it generates. 

(b) Let D be the collection of all intervals of the form (−∞, b], and let B = 
σ(D) be the σ-algebra that it generates. 
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(c) For any n, we define the Borel σ-algebra of (n, n + 1] as the σ-algebra 

generated by sets of the form [a, b] ⊂ (n, n + 1]. We then say that A is a 

Borel subset of R if A ∩ (n, n + 1] is a Borel subset of (n, n + 1], for every 

n. 

Exercise 8. Show that the above three definitions of B are equivalent. 

Let Pn be the uniform measure on (n, n + 1] (defined on the Borel sets in 

(n, n + 1]). Given a set A ⊂ R, we decompose it into countably many pieces, 

each piece contained in some interval (n, n + 1], and define its “length” µ(A) 
using countable additivity: 

µ(A) = 
∞
X

� �

Pn A ∩ (n, n + 1] .
n=−∞ 

It turns out that µ is a measure on (R, B), called again Lebesgue measure. 

However, it is not a probability measure because µ(R) = ∞. 

Exercise 9. Show that µ is a measure on (R, B). Hint: Use the countable additivity of 
the measures Pn to establish the countable additivity of µ. You can also the fact that if 

P P P P 
1 1 1 1

the numbers aij are nonnegative, then = i=1 j=1 
aij j=1 i=1 

aij . 

Similar to the case of {0, 1}∞ , there exist subsets of [0, 1] that are not Borel 

sets. In fact the similarities between the models of Sections 2 and 3 are much 

deeper; the two models are essentially equivalent, although we will not elab-

orate on the meaning of this. Let us only say that the equivalence relies on 

the one-to-one correspondence of the sets [0, 1] and {0, 1}∞ obtained through 

the binary representation of real numbers. Intuitively, generating a real number 

at random, according to the uniform distribution (Lebesgue measure) on [0, 1], 
is probabilistically equivalent to generating each bit in its binary expansion at 

random. 

COMPLETION OF A PROBABILITY SPACE 

Starting with an algebra F0 and a countably additive function P0 on that algebra, 

the Extension Theorem leads to a probability measure on the smallest σ-algebra 

containing F0. Can we extend the measure further, to a larger σ-algebra? If 

so, is the extension unique, or will there have to be some arbitrary choices? We 

describe here a generic extension that assigns probabilities to certain additional 

sets A for which there is little choice. 

Consider a probability space ( , F , P). Suppose that B ∈ F , and P(B) = 
0. Any set B with this property is called a null set. (Note that in this context, 
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“null” is not the same as “empty.”) Suppose now that A ⊂ B. If the set A is not 

in F , it is not assigned a probability; were it to be assigned one, the only choice 

that would not lead to a contradiction is a value of zero. 

The first step is to augment the σ-algebra F so that it includes all subsets of 

null sets. This is accomplished as follows: 

(a) Let N be the collection of all subsets of null sets; 

(b) Define F∗ = σ(F ∪ N ), the smallest σ-algebra that contains F as well as 

all subsets of null sets. 

(c) Extend P in some natural manner to obtain a new probability measure P ∗ on 

( , F∗). In particular, we let P ∗(A) = 0 for every subset A ⊂ B of every 

null set B ∈ F . It turns out that such an extension is always possible and 

unique. 

Details of this construction will be worked out in an exercise. 

The resulting probability space is said to be complete. It has the property 

that all subsets of null sets are included in the σ-algebra and are also null sets. 

When = [0, 1] (or = R), F is the Borel σ-algebra, and P is Lebesgue 

measure, we obtain an augmented σ-algebra F∗ and a measure P ∗ . The sets in 

F∗ are called Lebesgue measurable sets. The new measure P ∗ is referred to by 

the same name as the measure P (“Lebesgue measure”). 

FURTHER REMARKS 

We record here a few interesting facts related to Borel σ-algebras and the Lebesgue 

measure. Their proofs tend to be fairly involved. 

(a) There exist sets that are Lebesgue measurable but not Borel measurable, 

i.e., F is a proper subset of F∗ . 

(b) There are as many Borel measurable sets as there are points on the real 

line (this is the “cardinality of the continuum”), but there are as many 

Lebesgue measurable sets as there are subsets of the real line (which is a 

higher cardinality) [Billingsley] 

Note: In Lecture 4 we will introduce a Cantor set, which has cardinality 

of the continuum, while being of measure 0. Since all subsets of a Cantor 

set (being null-sets) are measurable, it is clear thar |F∗| ≥ |2R|. Showing 

that |F| = |R| is a lot more involved. Note that this difference in cardi-

nalities automatically implies there is a “wealth” of Lebesgue-measurable 

sets which are not Borel. 
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(c) There exist subsets of [0, 1] that are not Lebesgue measurable; see Section 

6 below and [Williams, p. 192]. 

(d) It is not possible to construct a probability space in which the σ-algebra 

includes all subsets of [0, 1], with the property that P({x}) = 0 for every 

x ∈ (0, 1] [Billingsley, pp. 45-46]. 

APPENDIX: ON STRANGE SETS (optional reading) 

In this appendix, we provide some evidence that not every subset of (0, 1] is 

Lebesgue measurable, and, furthermore, that Lebesgue measure cannot be ex-

tended to a measure defined for all subsets of (0, 1]. 
Let “+” stand for addition modulo 1 in (0, 1]. For example, 0.5+0.7 = 0.2, 

instead of 1.2. You may want to visualize (0, 1] as a circle that wraps around so 

that after 1, one starts again at 0. If A ⊂ (0, 1], and x is a number, then A + x 
stands for the set of all numbers of the form y + x where y ∈ A. 

Define x and y to be equivalent if x + r = y for some rational number r. 

Then, (0, 1] can be partitioned into equivalence classes. (That is, all elements 

in the same equivalence class are equivalent, elements belonging to different 

equivalent classes are not equivalent, and every x ∈ (0, 1] belongs to exactly 

one equivalence class.) Let us pick exactly one element from each equivalence 

class, and let H be the set of the elements picked this way. (This fact that a set H 
can be legitimately formed this way involves the Axiom of Choice, a generally 

accepted axiom of set theory.) We will now consider the sets of the form H + r, 

where r ranges over the rational numbers in (0, 1]. Note that there are countably 

many such sets. 

The sets H + r are disjoint. (Indeed, if r1 6= r2, and if the two sets H + r1, 

H + r2 share the point h1 + r1 = h2 + r2, with h1, h2 ∈ H , then h1 and h2 
differ by a rational number and are equivalent. If h1 6= h2, this contradicts the 

construction of H , which contains exactly one element from each equivalence 

class. If h1 = h2, then r1 = r2, which is again a contradiction.) Therefore, 

(0, 1] is the union of the countably many disjoint sets H + r. 

The sets H + r, for different r, are “translations” of each other (they are 

all formed by starting from the set H and adding a number, modulo 1). Let us 

say that a measure is translation-invariant if it has the following property: if A 
and A + x are measurable sets, then P(A) = P(A + x). Suppose that P is a 

translation invariant probability measure, defined on all subsets of (0, 1]. Then, 

X X

� �

1 = P (0, 1] = P(H + r) = P(H),
r r 
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where the sum is taken over all rational numbers in (0, 1]. But this impossible. 

We conclude that a translation-invariant measure, defined on all subsets of (0, 1] 
does not exist. 

On the other hand, it can be verified that the Lebesgue measure is translation-

invariant on the Borel σ-algebra, as well as its extension, the Lebesgue σ-

algebra. This implies that the Lebesgue σ-algebra does not include all subsets 

of (0, 1]. 
An even stronger, and more counterintuitive example is the following. It in-

dicates, that the ordinary notion of area or volume cannot be applied to arbitrary 

sets. 

The Banach-Tarski Paradox. Let S be the two-dimensional surface of the unit 

sphere in three dimensions. There exists a subset F of S such that for any k ≥ 3, 

S = (τ1F ) ∪ · · · ∪ (τkF ), 

where each τi is a rigid rotation and the sets τiF are disjoint. For example, S 
can be made up by three rotated copies of F (suggesting probability equal to 

1/3, but also by four rotated copies of F , suggesting probability equal to 1/4). 

Ordinary geometric intuition clearly fails when dealing with arbitrary sets. 
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