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SLLN example problem 

Theorem 0.1 (SLLN). Suppose X1, X2, . . .  are i.i.d. random variables with E[|Xi|] < ∞, 
1 n and define Sn := Xi for all n. Then n i=1 

Sn → E[X1] almost surely. 

Here is an example problem for using the SLLN: 

Problem 0.1. Let X1, X2, . . .  be i.i.d. nonnegative random variables with finite mean 
E[X1] = λ. Fixing ε > 0, let Cm be the event that 

t 
1 

Xi − λ ≤ ε for all t ≥ m 
t 

i=1 

∗ Prove that there exists some m for which P[Cm ∗ ] > 1/2. 

By the SLLN, we know that if we define the event A as 

t 
1 

A := ω : lim  Xi(ω)− λ = 0  
t→0 t 

i=1 

then P[A] = 1. Let us also define the event B as 

∞ 

B := Cm 

m=1 

Note that for any ω ∈ A, there exists some integer m(ω) such that Cm(ω) happens (by definition). 
Therefore, for any ω ∈ A, we know that ω ∈ B – and  therefore  A ⊆ B. But this implies 
P[∪mCm] = P[B] = 1 (since P[A] = 1). 

But Cm are a nondecreasing sequence of events and therefore by continuity of probability 
∗ limm→∞ P[Cm] = 1. But that immediately means that for sufficiently large m , we have 

P[Cm ∗ ] > 1/2. 
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Convergence of empirical estimates, done three ways 

n Problem 0.2. Let X1, X2, . . .  be i.i.d. ∼ Bern(p), and define Sn := 1 Xi. We know n i=1 
by SLLN that limn→∞ Sn → p almost surely. 

We now ask: given accuracy ε and confidence 1 − δ, how many samples of Xi do we need 
to estimate p to that accuracy and confidence? Formally, given ε, δ > 0, we want to know 
the smallest n such that 

P |Sn − p| ≤ ε ≥ 1 − δ 

This can be done three ways: 

• Using Hoeffding to first show that 

− nε2 

P |Sn − p| > ε ≤ 2e 3 

• Using Chebyshev’s Inequality to first show that 

1 P |Sn − p| > ε ≤ 
nε2 4 

• Using the Central Limit Theorem, show that 
√ 

P |Sn − p| > ε 2 − 2Φ(2ε n) 

where Φ is the CDF of N (0, 1) (to make this rigorous, use the Berry-Esseen Theorem). 

We need the following theorems of course: 

Theorem 0.2 (Hoeffding’s Theorem). If Xi are i.i.d. Bernoulli random variables, and 
n X := i=1 Xi, 

− α
2 
E[X] P |X − E[X]| ≥ αE[X] ≤ 2e 3 

Theorem 0.3 (Chebyshev’s Inequality). If X is a r.v. with finite variance, then 

Var(X) P |X − E[X]| ≥ α ≤ 
α2 

Theorem 0.4 (Central Limit Theorem). Let X1, X2, . . .  be i.i.d. with finite mean 
1 n E[X1] =  µ and finite variance Var(X1) =  σ2 . Then, defining Sn := i=1 Xi, n 

nSn − nµ √ → N (0, 1) (in distribution) 
nσ 
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By Hoeffding 

We multiply everything by n since 

P |Sn − p| > ε = P |nSn − np| > nε  

nSn is just the sum of the Xi’s, and np their expected value. So we just plug into the Hoeffding 
theorem (with α = ε) to get the result given. Now we need n large enough that 

− nε2 

2e 3 ≤ δ 

A little algebra reveals that this is equivalent to n ≥ 3 log(2/δ) ε2 

By Chebyshev 

Again we multiply everything by n. Because the Xi are independent, 

n 
Var(nSn) =  nVar(Xi) =  np(1 − p) ≤ 

4 

Plugging in α = nε and the variance above, we get 

P |Sn − p| > ε ≤ 
1 

4nε2 

1 exactly as we wanted it. Again, we want n large enough that this is ≤ δ. Algebra gives: n ≥ 4δε2 

By Central Limit Theorem 

Once again, multiply everything by n (and move the denominator over) using µ = p, and define 
nSn−nµ Yn := √ . Then we get 

nσ 

√ √ 
ε n nSn − nµ ε n |Yn| > ⇐⇒ √ > ⇐⇒ Sn − p > ε 
σ nσ σ 

But by the CLT, Yn is approximately distributed according to N (0, 1). Therefore,  by  symmetry,  

√ √ √ 
ε n ε n ε n √ 

P |Sn − p| > ε = P |Yn| > ≈ 2 1 − Φ = 2  − 2Φ ≤ 2 − 2Φ(2ε n) 
σ σ σ 

The last step happens because σ2 = p(1 − p) ≤ 1/4, which implies σ ≤ 1/2. Note  that  this  is  
highly non-rigorous, so when in doubt double-check with Berry-Esseen. 

Finally, let’s see what n is required for a given ϵ, δ. We really want to upper-bound the 
probability of failure by δ, meaning: 

Φ−1 2−δ √ √ 2 − δ 2 2 − 2Φ(2ε n) =  δ ⇐⇒ Φ(2ε n) =  ⇐⇒ n = 
2 2ε 

2 
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Conclusion 

1 
ε (i.e. 

1 Note that the three results have equivalent dependencies on ), but Hoeffding has much 2 ε 
better dependence on δ 

1 than Chebyshev does; however, Chebyshev has a better constant and can 
therefore be better when confidence doesn’t need to be super large. Meanwhile, the CLT-derived 
bound is by far the strongest in general but you have to be careful about when you can use it 
(again, for full rigor, apply Berry-Esseen). For instance, if δ = 0.05(95% confidence wanted) 
and ε = 0.01, then: 

• Chebyshev proves that 50,000 trials are sufficient. 

• Hoeffding proves that 110,667 trials are sufficient. 

• CLT proves that (approximately) 9,604 trials are sufficient. 

However, if we require much higher confidence, i.e. δ = 0.001, then 

• Chebyshev proves that 2,500,000 trials are sufficient. 

• Hoeffding proves that 228,028 trials are sufficient. 

• CLT proves that (approximately) 27,069 trials are sufficient. 



5 

The Chernoff-Union One-Two Punch Combo 

Problem 0.3. Let Z1, . . . , Zn be uniformly distributed (i.i.d.) in [0, 1]2, and let L(Z1, . . . , Zn) 
be the length of the shortest continuous path which visits all n points. Prove that with high 
probability, Ln ∝ n1/2 , i.e. that there are constants 0 < b < B  and a polynomial (or 
faster-growing function) q(n) such that 

b n1/2 ≤ L(Z1, . . . , Zn) ≤ B n1/2 

with probability at least 1 − 1/q(n) (for all sufficiently large n). 

Fun fact: The proof we’ll demonstrate also suffices to show that if we are in d-dimensional 
space, L ∝ n1−1/d; in fact, it can be generalized to show strong lower bounds for L when the 
path must satisfy differential constraints as well! (This was part of my master’s thesis.) 

The upper-bound, in about two seconds 

The upper bound is easy and not really the focus here. We can just split up the square into n 
cells of size n−1/2 ×n−1/2 and then travel from cell to cell getting all the points before moving √ 
on. This takes time proportional to n1/2 because each arc has length at most 2n−1/2 and there 
are at most 2n of them (point to point and cell to cell). Note that this always works. 

The lower-bound game plan 

For the lower bound, we ask a related question: what is the maximum number of points we can 
collect with a path of length 1? Clearly if the answer is at most proportional to n1/2 we are done 
because it would then take at least (proportional to) n1/2 such paths to get all n points. 

We’ll begin with the following facts. The proof would work with any constant, but 7 is the 
smallest constant which works and this makes the constant bounds tighter. The second bound is 
certainly not the tightest possible, but it doesn’t matter (it doesn’t even really make the constant 
bounds worse)! 

Fact 0.1. For any ε, a radius-2ε circle can be covered by 7 radius-ε circles. 

Fact 0.2. The unit square can be covered by ε−2 circles of radius ε. 

Now we are going to follow this game plan: 

• Discretize the problem by representing paths by sequences of (appropriately sized) circles. 

• Compute the number of such sequences of circles (horrifyingly large!) 

• Compute the probability that an arbitrary fixed sequence contains “too many” points (very 
small thanks to Chernoff!) 

• Apply the Union Bound to get the result. 
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Discretization 

Let Bℓ(z) denote the ball of radius ℓ centered at z. We also fix a ‘canonical’ configuration of 
seven radius-ℓ circles for any radius-2ℓ circle. 

Suppose we let ϵ = n−1/2 , and cover the space with ϵ−2 = n circles of radius ε. Now we have a 
path of length ≤ 1 - call it a function φ : [0, 1] → [0, 1]2 which satisfies the Lipschitz condition 
(i.e. ∥φ(x1) − φ(x2)∥2 ≤ |x1 − x2|) – this is effectively a “speed limit” on the function. 

Let us check in on φ every ε – i.e. we look at φ(t ε) for all t = 1, 2, . . . , n1/2 . Specifically, we do 
the following: 

1. Let ψ0 be the center of the circle φ(0) falls into (if there is more than one, pick arbitrarily). 

2. We build a sequence of points ψ := ψ0,ψ1, . . . ,ψ  1/2−1 as follows: n 

(a) For every t = 0, 1, . . . , n1/2 − 1, if φ(t ε) ∈ Bε(ψt), then  φ((t + 1) ε) ∈ B2ε(ψt) (can’t 
make it out in time because of the Lipschitz condition). 

(b) Therefore, by Fact 1 from the previous page, it must be in one (at least - if more than 
one, pick arbitrarily) of the 7 radius-ε circles which cover B2ε(ψt) – so let ψt+1 be the 
center of that circle. 

Note that this always preserves the condition that φ(t ε) ∈ Bε(ψt). 

Note also that between φ(t ε) and φ((t+1) ε), the path can never leave B2ε(ψt) (by the Lipschitz 
condition) – and therefore the path is entirely contained in 

1/2−2 n

Sψ := B2ε(ψt) 
t=0 

So how many different sequences of this type are possible? Well, denote the set of all such 
sequences of Ψ: 

• There are n choices for the ψ0 (just the n circles covering [0, 1]2). 

• For each of n1/2 steps, there are (at most since we might be on the boundary) 7 choices for 
the next circle. 

1/2 1/2 n 2n Therefore |Ψ| = n · 7 , which we’ll just round up to e because frankly we’re not trying to 
make this super efficient anyway and e2 > 7is convenient. 

Now what we’ll do is see the maximum number a sequence of circles can cover; since every length-
1 path is contained in such a sequence this upper-bounds the number of points any length-1 path 
can collect. 
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A fixed circle-sequence 

Now let’s fix an arbitrary sequence ψ = ψ0, . . . ,ψn1/2−1 before the random targets are assigned 
and ask: how many random targets does this sequence cover (with circles of radius 2ε)? 

1/2 −1 Well, the sequence consists of n circles of area π(2ε)2 = 4πn . Thus, the area is at most 
4πn−1/2 (again, we can make this more efficient by noting that the circles must overlap and yada 
yada, but that’s a lot of work and doesn’t really change the point). Let’s define the random 
variables 

n 
1 if Zi ∈ Sψ 

Xi := and Xψ := Xi 
0 otherwise 

i=1 

Since the points are dropped in uniformly, we get 
n 

−1/2 1/2 E[Xψ] :=  E[#{i : Zi in Sψ}] =  Xi ≤ 4πn · n = 4πn 
i=1 

Note that equality is “worst case” here, so if we treat the area as equal to this, we’ll get an upper-
bound, as we want. Since the points are independent, we get to apply the Chernoff Bound. 
Specifically, we use this version: 

Theorem 0.5 (Hoeffding Upper Bound). If Xi are i.i.d. Bernoulli random variables, 
n and X := Xi, i=1 

− δ
2 
E[X] P X ≥ (1 + δ)E[X] ≤ e 3 

Plugging in our E[X], we get that 

− δ
2 1/2 − 4π δ2 1/2 1/2 4πn n P Xψ ≥ (1 + δ)4πn ≤ e 3 = e 3 

We will determine what δ we should use later - for now, let’s just keep it as a variable. 

Union-bounding, and choosing δ 

Okay, now we simply combine the two results from above with the Union Bound, define an 
appropriate δ, and finish. We are interested in bounding 

1/2] P[max Xψ ≥ (1 + δ)4πn 
ψ∈Ψ 

1/2 − 4π δ2 1/2 2n n We have e sequences in Ψ; each has (at most) a probability of e 3 to break the bound. 
Therefore, the above is just 

1/2 − 4π δ2 1/2 2n n P[max Xψ ≥ (1 + δ)4πn 1/2] ≤ e e 3 

ψ∈Ψ 

Let’s pick δ = 0.7, giving us 
1/2 − 4π 1/2 1/2 1/2] ≤ e 2n (0.7)2n −0.052·n P[max Xψ ≥ 1.7· 4π · n e 3 < 2e 

ψ∈Ψ 
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Finishing the argument 

Since maxψ∈Ψ Xψ is an upper bound for how many points a length-1 path can collect, we get 
the result that 

−0.052·n Proposition 0.1. With probability at least 1 − e 
1/2 , there is no length-1 path which 

collects more than 1.7· 4π · n1/2 < 22 n1/2 of the n random points. 

This now finishes what we wanted to show about the TSP, because if it takes length 1 to get 
1 22 n1/2 points, it will take at least a path of length n1/2 to get all n of them giving our final 22 

theorem (combined with the upper bound at the top): 

Theorem 0.6. Let Z1, . . . , Zn be uniformly distributed (i.i.d.) in [0, 1]2, and let L(Z1, . . . , Zn) 
be the length of the shortest continuous path which visits all n points. Then 

√ 
1/2 1 

n 1/2 ≤ L(Z1, . . . , Zn) ≤ 2 2 n 
22 

−0.052·n with probability at least 1 − e 
1/2 (for all sufficiently large n). 

Note that the constant factors here are rather horrendous. They can be tightened quite a bit 
on both ends; but fundamentally this technique will suffer from this problem because of how 
generous we’re prepared to be to allow the paths to get all the points in their associated sets. 
But it does show rate-of-growth quite nicely and can be generalized to a much wider class of 
problems in which the paths have to satisfy differential constraints. 
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