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1 INTRODUCTION 

In this lecture we discuss infinite state Markov chains. Then we consider finite 

and infinite state M.c. where the transition between the states occurs during 

some random time interval, as opposed to unit time steps. Most of the times 

we state the results without proofs. Our treatment of this material is also very 

brief. A more in depth analysis of these concepts is devoted by the course 6.262 

- Discrete Stochastic Processes. 

2 INFINITE STATE MARKOV CHAINS 

Suppose we have a (homogeneous) Markov chain whose state space is countably 

infinite X = {0, 1, 2, . . .}. In this case the theory is similar in some respects to 

the finite state counterpart, but different in other respects. We denote again by 

pi,j the probability of transition from state i to state j. Thus we will consider 

only homogeneous Markov chains, without explicitly saying this. We introduce 

the notion of i communicates with j, written as i → j, in the same manner as 

before. Thus again we may decompose the state space into transient states i, 
namely states such that for some j, i → j but j 9 i; and the remaining states 

which are recurrent. However, in the case of infinite M.c. a new complication 

appears. To discuss it, let us again define a probability distribution ˇ on X to be 
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stationary if it is time invariant. The necessary and sufficient condition for this 
P 

is ˇi ≥ 0, = 1 and for every state i i∈X ˇi 

X 

ˇi = ˇjpj,i. 
j 

d d 
As a result, if the M.c. Xn has the property X0 = ˇ, then Xn = ˇ for all n. 

Now let us consider the following M.c. on Z+. A parameter p is fixed. For 

every integer i > 0, pi,i+1 = p, pi,i−1 = 1 − p and p0,1 = p, p0,0 = 1 − p. This 

M.c. is called random walk with reflection at zero. Let us try to find a stationary 

distribution ˇ of this M.c. It must satisfy 

ˇi = ˇi−1pi−1,i + ˇi+1pi+1,i = ˇi−1p + ˇi+1(1 − p), i ≥ 1. 

ˇ0 = ˇ0(1 − p) + ˇ1(1 − p). 

From this we obtain ˇ1 = p ˇ0 and iterating 1−p 

p 
ˇi+1 = ˇi. (1) 

1 − p 

This gives ˇi = (p/(1 − p))iˇ0. Now if p > 1/2 then ˇi → ∞ and we cannot 
P 

possibly have that ˇi = 1. Thus no stationary distribution exists. Note, that i 

however all pairs of states i, j communicate, as we can get from i to j > i in j−i 
j−i steps with probability p > 0, and from j to i in j − i steps with probability 

(1 − p)j−i . 

We conclude that an infinite state M.c. does not necessarily have a stationary 

distribution. Recall that in the case of finite state M.c. if i is a recurrent state, 

then its recurrence time Ti has finite expected value (as it has geometrically 

decreasing tails). For the case of infinite M.c. the difficulty is the fact that while 

every state i communicates with every other state j, it is possible that the chain 

starting from i wanders off to ”infinity” for ever without ever returning to i. 
Furthermore, it is possible that even if the chain returns to i infinitely often with 

probability one, the expected return time from i to i is infinite. Recall, that the 

return time is defined to be Ti = min{n ≥ 1 : Xn = i}, when the M.c. starts at 

i at time 0, when such n exists, and defined to be Ti = ∞ when the chain never 

returns to i. 
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Definition 1. Given an infinite M.c. Xn, n ≥ 1, the state i is defined to be 

transient if the probability of never returning to i is positive. Namely, 

P(Xn 6= i, ∀n ≥ 1|X0 = i) > 0. 

Otherwise the state is defined to be recurrent. It is defined to be positive 

recurrent if E[Ti] < ∞ and null-recurrent if E[Ti] = ∞. 

Thus, unlike the finite state case, the state is transient if there is a positive 

probability of no return, as opposed to existence of a state from which the return 

to starting state has probability zero. It is an exercise to see that the definition 

above when applied to the finite state case is consistent with the earlier defini-

tion. Namely, it is an implication of how we defined the transient and recurrent 

states, rather than the definition. Also, observe that there are no null-recurrent 

states in the finite state case. 

The following theorem holds, the proof of which we skip. 

Theorem 1. Given an infinite M.c. Xn, n ≥ 1 suppose all the states com-

municate. Then there exists a stationary distribution ˇ iff there exists at 

least one positive recurrent state i. In this case in fact all the states are 

positive recurrent and the stationary distribution ˇ is unique. It is given as 

ˇj = 1/E[Tj ] > 0 for every state j. 

We see that in the case when all the states communicate, all states have the 

same status: positive recurrent, null recurrent or transient. In this case we will 

say the M.c. itself is positive recurrent, null recurrent, or transient. There is 

an extension of this theorem to the cases when not all states communicate, but 

we skip the discussion of those. Similarly, if there are several communicating 

classes, then there exists at least one stationary distribution per class which con-

tains at least one positive recurrent state (and as a result all states in the class 

are positive recurrent). 

Theorem 2. A random walk with reflection Xn on Z+ is positive recurrent 

if p < 1/2, null-recurrent if p = 1/2 and transient if p > 1/2. 

Proof. The case p < 1/2 will be resolved by exhibiting explicitly at least one 
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steady state distribution ˇ. Since all the states communicate, then by Theorem 1 

we know that the stationary distribution is unique and E[Ti] = 1/ˇi < ∞ for 

all i. Thus the chain is positive recurrent. In fact we can find explicitly the 

stationary distribution. Consider again at the recurrence (1), which suggests 

ˇi = (p/(1 − p))iˇ0. From this we obtain 

X 

ˇ0(1 + (p/(1 − p))i) = 1 
i>0 

implying ˇ0 = 1 − p/(1 − p) = (1 − 2p)/(1 − p) and 

� �i 1 − 2p p 
ˇi = , i ≥ 0. 

1 − p 1 − p 
P 

This gives us a probability vector ˇ with = 1 and completes the proof for i ˇi 
the case p < 1/2. 

The case p ≥ 1/2 will be analyzed using our earlier result on random walk 

on Z. Recall that for such a r.w. the probability of return to zero is = 1 iff 
p = 1/2. In the case p = 1/2 we have also established that the expected return 

time to zero is infinite. Thus suppose p = 1/2. A r.w. without reflection makes 

the first step into 1 or −1 with probability 1/2 each. Conditioning on X1 = 1 
and conditioning on X1 = −1, we have that the expected return time to zero is 

again infinite. If the first transition is into 1, then the behavior of this r.w. till the 

first return to zero is the same as of our r.w. with reflection at zero. In particular, 

the return to zero happens with probability one and the expected return time is 

infinite. We conclude that the state 0 is null-recurrent. 

Finally, suppose p > 1/2. We already saw that the M.c. cannot have a 

stationary distribution. Thus by Theorem 1, since all the states communicate 

we have that all states are null-recurrent or transient. We just need to refine this 

result to show that in fact all states are transient. 

For the unreflected r.w. we have that with positive probability the walk never 

returns to zero. Let, T0 denote return time to 0 - the time it takes to come back 

to zero for unreflected random walk, when it at zero. We claim that P(T0 = 
∞|X1 = 1) > 0, P(T0 = ∞|X1 = −1) = 0. Namely, the ”no return to 

zero” happens iff the first step is to the right. First let us see why just the first 

inequality, namely P(T0 = ∞|X1 = 1) > 0 implies our result. Conditioned on 

the event that the first step is to the right, the r.w. behaves as r.w. with reflection 

at zero until the first return to zero. The assumption P(T0 = ∞|X1 = 1) > 
0 means there is a positive probability of no return for random walk without 

reflection when the first step is to the right. Then there is a positive probability of 

no return for the reflected r.w. conditioned on X1 = 1. Since the transition from 
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zero to 1 occurs with positive probability p, then there is a positive probability 

of no return to zero starting from zero for the random walk with reflection and 

thus state 0 is transient. Since all states communicate, this means that all states 

of the random walk with reflection are transient. 

Now we establish that claim. We have P(T0 = ∞) = pP(T0 = ∞|X1 = 
1) + (1 − p)P(T0 = ∞|X1 = −1). We also have that P(T0 = ∞) > 0. 

We now establish that P(T0 = ∞|X1 = −1) = 0. This immediately implies 

P(T0 = ∞|X1 = 1) > 0, which we need. Now assume X1 = −1. Consider 

Yn = −Xn. Observe that, until the first return to zero, Yn is a reflected r.w. with 

parameter q = 1 − p. Since q < 1/2, then, as we established at the beginning 

of the proof, the process Yn returns to zero with probability one (moreover the 

return time has finite expected value). We conclude that Xn returns to zero 

with probability one, namely P(T0 = ∞|X1 = −1) = 0. This completes the 

proof. 

CONTINUOUS TIME MARKOV CHAINS 

We consider a stochastic process X(t) which is a function of a real argument t 
instead of integer n. Let X be the state space of this process, which is assumed 

to be finite or countably infinite. 

Definition 2. X(t) is defined to be a continuous time Markov chain if for 

every j, i1, . . . , in−1 ∈ X and every sequence of times t1 < t2 < · · · < tn, 

P(X(tn) = j|X(tn−1) = in−1, . . . ,X(t1) = i1) (2) 

= P(X(tn) = j|X(tn−1) = in−1). (3) 

The process is defined to be homogeneous if P(X(t) = j|X(s) = i) = 
P(X(t − s) = j|X(0) = i) for every i, j and s < t. 

From now on we assume without explicitly saying that our M.c. is homo-

geneous. We write p
(t) 

for P(X(t) = j|X(0) = i). The continuous time i,j 

Markov chain is a special case of a Markov process, the definition of which we 

skip. Loosely speaking, a stochastic process is a Markov process if its future 

trajectory is completely determined by its current state, independently from the 

past. We already know an example of a continuous time M.c. - Poisson pro-
d 

cess. It is given as P(X(t) = i + k|X(s) = i) = Pois(�(t − s)), k ≥ 0 and 

P(X(t) = i + k|X(s) = i) = 0 for k < 0. 
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Given a state i and time t0 introduce “holding time” U(i, t0) as inf{s > 0 : 
X(t0 + s) 6= i}, when X(t0) = i. Namely, it is the time that the chain spends in 

state i after time t0, assuming that it is in i at time t0. It might turn out in special 

cases that U(i, t0) = 0 with positive probability. But in many special cases this 

will not happen. For now we assume that U(i, t0) > 0 a.s. In special cases we 

can establish this directly. 

d 
Proposition 1. For every state i and time t0, U(i, t0) = Exp(µi) for some 

parameter µi which depends only on the state. 

Since, per proposition above, the distribution of holding time is exponential, 

and therefore memoryless, we see that the time till the next transition occurs is 

independent from the past history of the chain and only depends on the current 

state i. The parameter µi is usually called transition rate out of state i. This is a 

very fundamental (and useful) property of continuous time Markov chains. 

Proof sketch. Consider 

P(U(i, t0) > x + y|U(i, t0) > x,X(t0) = i). 

The event U(i, t0) > x,X(t0) = i implies in particular X(t0 + x) = i. Since 

we have a M.c. the trajectory of X(t) for t ≥ t0 + x depends only on the state 

at time t0 + x which is i in our case. Namely 

P(U(i, t0) > x + y|U(i, t0) > x,X(t0) = i) = P(U(i, t0 + x) > y|X(t0 + x) = i). 

But the latter expression by homogeneity is P(U(i, t0) > y|X(t0) = i), as it is 

the probability of the holding time being larger than y when the current state is 

i. We conclude that 

P(U(i, t0) > x + y|U(i, t0) > x,X(t0) = i) = P(U(i, t0) > y|X(t0) = i), 

namely 

P(U(i, t0) > x + y|X(t0) = i) = P(U(i, t0) > y|X(t0) = i)P(U(i, t0) > x|X(t0) = i). 

Since the exponential function is the only one satisfying this property, then 

U(i, t0) must be exponentially distributed. 

There is an omitted subtlety in the proof. We assumed that for every t, z > 0 
and state i, P(X(t+ s) = i, ∀ s ∈ [0, z]|X(t) = i, ℑt) = P(X(t+ s) = i, ∀ s ∈ 
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[0, z]|X(t) = i) where ℑt denotes the history of the process up to time t. We 

deduced this based on the assumption (2). This requires a technical proof, which 

we ignored above. 

Thus the evolution of a continuous M.c. X(t) can be described as follows. 

It stays in a given state i during some exponentially distributed time Ui, with pa-

rameter µi which only depends on the state. After this time it makes a transition 

to the next state j. If we consider the process only at the random times of transi-

tions, denoted say by t1 < t2 < · · · , then we obtain an embedded discrete time 

process Yn = X(tn). It is an exercise to show that Yn is in fact a homogeneous 

Markov chain. Denote the transition rates of this Markov chain by pi,j . The 

value qi,j = µipi,j is called “transition rate” from state i to state j. Note, that 

the values pi,j were introduced only for j 6= i, as they were derived from M.c. 
P 

changing its state. Define qi,i = − qi,j . The matrix G = (qi,j), i, j ∈ X j 6=i 

is defined to be the generator of the M.c. X(t) and plays an important role, 

specifically for the discussion of a stationary distribution. 

A stationary distribution ˇ of a continuous M.c. is defined in the same way 

as for the discrete time case: it is the distribution which is time invariant. The 

following fact can be established. 

Proposition 2. A vector (ˇi), i ∈ X is a stationary distribution iff ˇi ≥ 
P P 

0, i ˇi = 1 and j ˇjqj,i = 0 for every state i. In vector form ˇT G = 0. 

As for the discrete time case, the theory of continuous time M.c. has a lot 

of special structure when the state space is finite. We now summarize without 

proofs some of the basic results. First there always exists a stationary distribu-

tion. The condition for uniqueness of the stationary distribution is the same -

single recurrence class, with communications between the states defined simi-

larly. A nice “advantage” of continuous M.c. is the lack of periodicity. There 

is no notion of a period of a state. Moreover, and most importantly, suppose the 

chain has a unique recurrence class. Then, letting ˇ denote the corresponding 

unique stationary distribution, the mixing property 

(t) 
lim p = ˇj i,j t→∞ 

holds for all states i, j. For the modeling purposes, it is useful sometimes to 

consider a continuous as opposed to a discrete M.c. 

There is an alternative way to describe a continuous M.c. and the embedded 

discrete time M.c. Assume that to each pair of states i, j we associate an expo-

nential “clock” - exponentially distributed r.v. Ui,j with parameter µi,j . Each 
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time the process jumps into i all of the clocks turned on simultaneously. Then 

at time Ui , min Ui,j the process jumps into state j = arg minj Ui,j . It is not 

hard to establish the following: the resulting process is a continuous time finite 

state M.c. The embedded discrete time M.c. has then transition probabilities 

P(X(tn+1) = j|X(tn) = i) = µi,j , as the probability that Ui,j = mink Ui,k 
P 

k µi,k 

is given by this expression, when the distribution of Ui,j is exponential with 

parameters µi,j. The holding time has then the distribution Exp(µi) where 
P 

µi = k µi,k. Thus we obtain an alternative description of a M.c. The tran-

sition rates of this M.c. are qi,j = µipi,j = µi,j . In other words, we described 

the M.c. via the rates qi,j as given. 

This description extends to the infinite M.c., when the notion of holding 

times is well defined (see the comments above). 
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