MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lecture 19

Uniform integrability, convergence of series

Contents

1. L_{1} convergence (aka convergence in mean), L_{1} LLN.
2. Uniform integrability
3. Convergence of series of independent summands

1 CONVERGENCE IN L_{1}

Definition 1 (Convergence in mean). A sequence of integrable random varibles X_{j} is said to converge in L_{1} to X (also known as "convergence in mean"), denoted $X_{j} \xrightarrow{L_{1}} X$ if

$$
\mathbb{E}\left[\left|X_{j}-X\right|\right] \rightarrow 0 \quad j \rightarrow \infty
$$

For $p>1$ we define $X_{j} \xrightarrow{L_{p}} X$ if $\mathbb{E}\left[\left|X_{j}\right|^{p}\right]<\infty$ and $\mathbb{E}\left[\left|X_{j}-X\right|^{p}\right] \rightarrow 0$.
Some simple properties are given below:
Proposition 1. (i) $X_{n} \xrightarrow{L_{1}} X$ implies $\mathbb{E}[|X|]<\infty$.
(ii) $X_{j} \xrightarrow{L_{t}} X$ implies $X_{j} \xrightarrow{\text { i.p. }} X$
(iii) $X_{j} \xrightarrow{L_{t}} X$ does not imply and is not implied by $X_{j} \xrightarrow{\text { a.s. }} X$.
(iv) The space of integrable random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ modulo almostsure equivalence is a Banach space, denoted as $L_{1}(\Omega, \mathcal{F}, \mathbb{P})$ with norm $\|X\|_{1} \triangleq \mathbb{E}[|X|]$. Similarly for $L_{p}(\Omega, \mathcal{F}, \mathbb{P})$.

Proof: (i) Follows from taking expectation in the triangle inequality:

$$
\begin{equation*}
|X| \leq\left|X_{n}-X\right|+\left|X_{n}\right| \tag{1}
\end{equation*}
$$

(ii) and (iii) is an exercise. (iv) is outside the scope of this class.

Our goal is to show the following the following (third!) variation of the LLN:

Proposition 2 (L_{1}-LLN). Let X_{j} be iid random variables with finite expectation, then

$$
\frac{1}{n} \sum_{j=1}^{n} X_{j} \xrightarrow{L_{1}} \mathbb{E}[X]
$$

The proof of this proposition follows by Theorem 1 and Corollary 1 below.

2 UNIFORM INTEGRABILITY

Definition 2. A collection of random variables $X_{\alpha}, \alpha \in S$ is uniformly integrable if

$$
\begin{equation*}
k(b) \triangleq \sup _{\alpha} \mathbb{E}\left[\left|X_{\alpha}\right| 1\left\{\left|X_{\alpha}\right|>b\right\}\right] \rightarrow 0 \quad b \rightarrow \infty \tag{2}
\end{equation*}
$$

Some useful criteria for checking u.i.:
Proposition 3. The following hold:
(i) If $\mathbb{E}[|X|]<\infty$ then $\{X\}$ is u.i.
(ii) When $X_{\alpha} \stackrel{d}{=} Y_{\alpha}$ then $\left\{X_{\alpha}\right\}$-u.i. iff $\left\{Y_{\alpha}\right\}$-u.i.
(iii) $\left\{X_{\alpha}\right\}$-u.i. iff $\left\{X_{\alpha}\right\}$ is L_{1}-bounded and uniformly continuous:

$$
\begin{align*}
\sup _{\alpha} \mathbb{E}\left[\left|X_{\alpha}\right|\right]<\infty \tag{3}\\
\sup _{\alpha} \mathbb{E}\left[\left|X_{\alpha}\right| 1_{E}\right] \rightarrow 0 \quad \text { as } \mathbb{P}[E] \rightarrow 0 \tag{4}
\end{align*}
$$

(iv) If $G: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is such that $\frac{G(t)}{t} \rightarrow \infty$ as tgrows without bound ${ }^{1}$ then

$$
\sup \mathbb{E}\left[G\left(\left|X_{\alpha}\right|\right)\right]<\infty \quad \Rightarrow \quad\left\{X_{\alpha}\right\}-\text { u.i. }
$$

[^0](v) If $X_{n} \xrightarrow{\text { a.s. }} X$ and $\mathbb{E}\left[\left|X_{n}\right|\right] \rightarrow \mathbb{E}[|X|]$ then $\left\{X_{n}\right\}$ is u.i.

Proof: (i) follows from the MCT, (ii) is obvious from the definition, (v) is part of the homework.

For (iii), first notice that $\mathbb{E}\left[\left|X_{\alpha}\right|\right] \leq k(b)+b$ for every $b>0$ and thus (3) holds. Similarly, notice that for every b :

$$
\mathbb{E}\left[\left|X_{\alpha}\right| 1_{E}\right] \leq \mathbb{E}\left[\left|X_{\alpha}\right| 1\left\{\left|X_{\alpha}\right|>b\right\}\right]+b \mathbb{P}[E] \leq k(b)+b \mathbb{P}[E]
$$

and thus by taking $\mathbb{P}[E] \rightarrow 0$ and $b \rightarrow \infty$ we prove (4). Conversely, if (3) and (4) hold, but $\left\{X_{\alpha}\right\}$ is not uniformly integrable then for some sequence α_{k} and $\epsilon_{0}>0$ we have

$$
\begin{equation*}
\mathbb{E}\left[\left|X_{\alpha_{k}}\right| 1\left\{\left|X_{\alpha_{k}}\right|>k\right\}\right] \geq \epsilon_{0}>0 \tag{5}
\end{equation*}
$$

On the other hand, by (3) and Markov inequality $\mathbb{P}\left[\left|X_{\alpha_{k}}\right|>k\right] \rightarrow 0$. Consequently, (5) contradicts (4).

Finally, to see (iv) just notice that for every $a>0$ there exists $b>0$ such that $\frac{G(t)}{t} \geq a$ for all $t>b$. Then,

$$
G\left(\left|X_{\alpha}\right|\right) \geq a\left|X_{\alpha}\right| 1\left\{\left|X_{\alpha}\right|>b\right\}
$$

and taking expectation here we obtain:

$$
k(b) \leq \frac{1}{a} \sup _{\alpha} \mathbb{E}\left[G\left(\left|X_{\alpha}\right|\right)\right]
$$

from which (2) follows by taking $a \rightarrow \infty$.
As a simple consequence of the Proposition we get:
Corollary 1. Let X_{j} be identically distributed (not necessarily independent!) and integrable. Then collection of normalized sums $\left\{\frac{1}{n} \sum_{j=1}^{n} X_{j}, n=1, \ldots\right\}$ is uniformly integrable.

Proof: Indeed, by Proposition 3(i) and (ii) we get that $\left\{X_{j}, j=1, \ldots\right\}$ is uniformly integrable. Now defining $Y_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ we have

$$
\sup _{n} \mathbb{E}\left[\left|Y_{n}\right|\right] \leq \mathbb{E}[|X|]<\infty
$$

and on the other hand

$$
\sup _{n} \mathbb{E}\left[\left|Y_{n}\right| 1_{E}\right] \leq \sup _{n} \mathbb{E}\left[\left|X_{n}\right| 1_{E}\right] \rightarrow 0 \quad \text { as } \mathbb{P}[E] \rightarrow 0,
$$

where the last step follows by (4) applied to $\left\{X_{j}\right\}$. Uniform integrability of $\left\{Y_{j}\right\}$ then follows from Proposition 3 (iii).

The main value of studying uniform integrability is the following:
Theorem 1. We have

$$
X_{n} \xrightarrow{L_{1}} X \quad \Longleftrightarrow \quad X_{n} \xrightarrow{\text { i.p. }} X \text { and }\left\{X_{n}\right\}-\text { u.i. }
$$

Proof: The \Rightarrow direction follows from Markov's inequality and Proposition 3(iii). Indeed, by (1) we have the inequality

$$
\begin{equation*}
\mathbb{E}\left[\left|X_{n}\right| 1_{E}\right] \leq \mathbb{E}\left[|X| 1_{E}\right]+\mathbb{E}\left[\left|X_{n}-X\right| 1_{E}\right] \tag{6}
\end{equation*}
$$

For very large $n \geq n_{0}$ the second term is smaller than ϵ and hence

$$
\limsup _{\mathbb{P}[E] \rightarrow 0}\left(\sup _{n} \mathbb{E}\left[\left|X_{n}\right| 1_{E}\right]\right) \leq \epsilon+\limsup _{\mathbb{P}[E] \rightarrow 0}\left(\mathbb{E}\left[|X| 1_{E}\right]+\max _{1 \leq n \leq n_{0}} \mathbb{E}\left[\left|X_{n}-X\right| 1_{E}\right]\right)
$$

where the second term is zero by (4) because $\left\{|X|,\left|X_{1}-X\right|, \ldots\left|X_{n_{0}}-X\right|\right\}$ is a uniformly integrable collection. Consequently, taking $\epsilon \rightarrow 0$ we have shown

$$
\sup _{n} \mathbb{E}\left[X_{n} 1_{E}\right] \rightarrow 0 \quad \mathbb{P}[E] \rightarrow 0
$$

Setting $E=$ in (6) we verify (4). Thus Proposition 3(iii) implies that the infinite collection $\left\{X_{n}\right\}$ is also u.i.

For the converse direction, we first notice that by characterization of convergence in probability there must exist a subsequence $X_{n_{k}} \xrightarrow{\text { a.s. }} X$. Then by Fatou's lemma and (3) we have

$$
\mathbb{E}[|X|]=\mathbb{E}\left[\liminf _{k}\left|X_{n_{k}}\right|\right] \leq \liminf _{k} \mathbb{E}\left[\mid X_{n_{k}}\right]<\infty
$$

Thus, the limit random variable is integrable and consequently (Exercise!) collection of nonnegative random variables $\left\{Y_{n}, n=1, \ldots\right\}$ is u.i. and $Y_{n} \xrightarrow{\text { i.p. }} 0$, where

$$
Y_{n} \triangleq\left|X_{n}-X\right| .
$$

Then, we have for every $\epsilon>0$

$$
\begin{align*}
\mathbb{E}\left[Y_{n}\right] & =\mathbb{E}\left[Y_{n} 1\left\{Y_{n}>\epsilon\right\}\right]+\mathbb{E}\left[Y_{n} 1\left\{Y_{n} \leq \epsilon\right\}\right] \tag{7}\\
& \leq \epsilon+\mathbb{E}\left[Y_{n} 1\left\{Y_{n}>\epsilon\right\}\right] . \tag{8}
\end{align*}
$$

Since $Y_{n} \xrightarrow{\text { i.p. }} 0$ we have $\mathbb{P}\left[Y_{n}>\epsilon\right] \rightarrow 0$. Then by (4) the second term converges to zero as $n \rightarrow \infty$. Hence, for all $\epsilon>0$

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left[Y_{n}\right] \leq \epsilon
$$

which shows $Y_{n} \xrightarrow{L_{1}} 0$.
As a corollary we obtain a result we assumed before (in proving that convergence of characteristic functions implies convergence in distribution).

Corollary 2. Let $f_{n}(x) \rightarrow f(x) \quad \forall x \in \mathbb{R}$ be a pointwise convergent sequence of pdfs. If $X_{n} \sim f_{n}$ and $X \sim f$ then $X_{n} \xrightarrow{\mathrm{~d}} X$.

Proof. Let $\phi(x)=\frac{1}{2} f(x)+\sum_{n=1}^{\infty} 2^{-n-1} f_{n}(x)$. It is clear that $\phi(x)$ is another pdf. Let $(\phi, \mathcal{F}, \mathbb{P})$ be defined as $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}, \mathbb{P}(d x)=\phi(x) d x$ and define random variables $Y_{n}(x)=f_{n}(x) / \phi(x)$. Note that as a consequence of our definition of ϕ this ratio is well-defined almost everywhere: $\phi(x)=0$ implies $f_{n}(x)=0$ and $\mathbb{P}(\{x: \phi(x)=0\})=0$. Similarly, define $Y(x)=f(x) / \phi(x)$. We have $Y_{n} \xrightarrow{\text { a.s. }} Y$.

Furthermore, by construction $\mathbb{E}\left[\left|Y_{n}\right|\right]=1=\mathbb{E}[|Y|]$. Thus, by Prop. 3(v) the collection $\left\{Y_{n}\right\}$ is u.i.. Consequently, from the previous Theorem we have $\mathbb{E}\left[\left|Y_{n}-Y\right|\right] \rightarrow 0$. Rewriting this last statement explicitly, we have shown

$$
\begin{equation*}
\int_{\mathbb{R}}\left|f_{n}(x)-f(x)\right| d x \rightarrow 0 \quad n \rightarrow \infty \tag{9}
\end{equation*}
$$

In particular, for any $E \in \mathcal{B}$ we have

$$
P_{X_{n}}[E]=\int_{E} f_{n}(x) \rightarrow \int_{E} f(x)=P_{X}[E]
$$

and taking $E=(-\infty, a]$ shows convergence of CDFs of X_{n} to the CDF of X at every point a.
(In fact, (9) is usually stated as "distribution of X_{n} converges to the distribution of X in total-variation". This is a stronger mode of convergence than convergence in distribution.)

3 SUMS OF INDEPENDENT RANDOM VARIABLES

A classical topic tightly related to the SLLN is convergence of sums

$$
S_{n}=\sum_{j=1}^{n} X_{j}
$$

when X_{j} are independent (and not identically distributed, of course). There is a great deal results about properties of S_{n}, and here we will only mention a core principle: Convergence behavior of S_{n}, its central moments, concentration properties, etc are largely encoded in the behavior of $\sum_{j=1}^{n} \operatorname{var}\left[X_{j}\right]$.

We start with an example. Consider two independent sequences:

$$
\begin{align*}
& \mathbb{P}\left[X_{n}= \pm 1\right]=\frac{1}{2 n}, \quad \mathbb{P}\left[X_{n}=0\right]=1-\frac{1}{n} \tag{10}\\
& \mathbb{P}\left[Y_{n}= \pm \frac{1}{n}\right]=\frac{1}{2} . \tag{11}
\end{align*}
$$

First, we notice that $\mathbb{E}\left[\left|X_{n}\right|\right]=\mathbb{E}\left[\left|Y_{n}\right|\right]=\frac{1}{2 n}$, so that sum of first moments diverges at the same speed. Furthermore, both series $\sum X_{n}$ and $\sum Y_{n}$ do not absolutely converge:

$$
\mathbb{P}\left[\sum_{n}\left|X_{n}\right|=+\infty\right]=\mathbb{P}\left[\sum_{n}\left|Y_{n}\right|=+\infty\right]=1
$$

Indeed, for Y_{n} this is obvious as $\left|Y_{n}\right|=\frac{1}{n}$, while for X_{n} it follows from BorelCantelli that: $\mathbb{P}\left[\left|X_{n}\right|=1\right.$-i.o $]=1$.

So far, we see that $\sum X_{n}$ and $\sum Y_{n}$ behave quite similarly. However, as we will see next it turns out that

$$
\begin{array}{ll}
\mathbb{P}\left[\sum_{n} X_{n} \text { converges }\right]=0 & \sum_{n} \operatorname{var}\left[X_{n}\right]=+\infty \\
\mathbb{P}\left[\sum_{n} Y_{n} \text { converges }\right]=1 & \sum_{n} \operatorname{var}\left[Y_{n}\right]<+\infty \tag{13}
\end{array}
$$

The explanation of this phenomena is the following: While both series diverge absolutely, the rapidly decreasing variances of terms in Y_{n} allows for "sign cancellation" effect to kick in making the series $\sum Y_{n}$ converge (similar to convergence of $\left.\sum_{n} \frac{(-1)^{n}}{n}\right)$.

Theorem 2 (Kolmogorov, Khintchine). Let X_{j} be independent and

$$
\begin{align*}
& \mu \triangleq \sum_{j=1}^{\infty} \mathbb{E}\left[X_{j}\right], \quad|\mu|<\infty, \tag{14}\\
& \sigma^{2} \triangleq \sum_{j=1}^{\infty} \operatorname{var}\left[X_{j}\right]<\infty \tag{15}
\end{align*}
$$

then

$$
S_{n}=\sum_{j=1}^{n} X_{j}
$$

converges almost surely and in L_{2} to a limit S with $\mathbb{E}[S]=\mu, \operatorname{var}[S]=\sigma^{2}$.
Conversely, if $\left|X_{j}\right| \leq c$ for some constant c and $S_{n} \xrightarrow{\text { a.s. }} S$ with realvalued S, then conditions (14)-(15) hold.

Proof: We prove the direct part. Without loss of generality we assume $\mathbb{E}\left[X_{j}\right]=0$. As we have shown in the homework (Cauchy criterion of almost sure convergence) it is sufficient to show that

$$
\begin{equation*}
\mathbb{P}\left[\sup _{k \geq 1}\left|S_{n+k}-S_{n}\right|>\epsilon\right] \rightarrow 0 \quad n \rightarrow \infty \tag{16}
\end{equation*}
$$

Kolmogorov's inequality (see Theorem following the proof) shows that

$$
\begin{equation*}
\mathbb{E}\left[\sup _{k \geq 1}\left|S_{n+k}-S_{n}\right|^{2}\right] \leq 2 \sum_{n}^{\infty} \operatorname{var}\left[X_{j}\right] . \tag{17}
\end{equation*}
$$

By Chebyshev's inequality we obtain then

$$
\begin{equation*}
\mathbb{P}\left[\sup _{k \geq 1}\left|S_{n+k}-S_{n}\right|>\epsilon\right] \leq \frac{2}{\epsilon^{2}} \sum_{n}^{\infty} \operatorname{var}\left[X_{j}\right] \tag{18}
\end{equation*}
$$

Since sum of variances converges, the left-hand side of (18) decreases to 0 as $n \rightarrow \infty$ and thus (16) is shown. The proof of $S_{n} \xrightarrow{\text { a.s. }} S$ is complete.

Notice that (17) with $n=0$ shows that "life-time maximum"

$$
M_{\infty} \triangleq \sup _{n \geq 1}\left|S_{n}\right|
$$

has finite second moment. Since

$$
\left|S_{n}-S\right| \leq 2 M_{\infty},
$$

by the DCT it follows that

$$
\mathbb{E}\left[\left|S_{n}-S\right|^{2}\right] \rightarrow 0
$$

and similarly for $\mathbb{E}\left[S_{n}\right] \rightarrow \mathbb{E}[S], \mathbb{E}\left[S_{n}^{2}\right] \rightarrow \mathbb{E}[S]$.
We proceed to proving the converse. First, assume $\mathbb{E}\left[X_{j}\right]=0$ and suppose $S_{n} \xrightarrow{\text { a.s. }} S$ but

$$
D_{n}=\sum_{j=1}^{n} \operatorname{var}\left[X_{j}\right] \nearrow \infty
$$

Then, notice that

$$
\mathbb{E}\left[\left|X_{j}\right|^{3}\right] \leq \mathbb{E}\left[\left|X_{j}\right|^{2}\right] c
$$

and thus

$$
\sum_{j=1}^{n} \mathbb{E}\left[\left|X_{j}\right|^{3}\right] \leq D_{n} c
$$

Consequently, by the CLT for non-identically distributed random variables we have

$$
\frac{1}{\sqrt{D_{n}}} S_{n} \xrightarrow{\mathrm{~d}} Z \sim \mathcal{N}(0,1) .
$$

On the other hand, we have for every t and $s>0$ and for all n large enough

$$
\begin{equation*}
\mathbb{P}\left[S_{n}>t\right] \geq \mathbb{P}\left[S_{n}>s \sqrt{D_{n}}\right] \tag{19}
\end{equation*}
$$

Since $S_{n} \xrightarrow{\mathrm{~d}} S$ we also have for all t such that $\mathbb{P}[S=t]=0$ that

$$
\mathbb{P}\left[S_{n}>t\right] \rightarrow \mathbb{P}[S>t] .
$$

However, upon taking the limit in (19) as $n \rightarrow \infty$ we get for all t and $s>0$:

$$
\mathbb{P}[S>t] \geq \mathbb{P}[Z>s]
$$

Taking $s \rightarrow 0$ we get

$$
\mathbb{P}[S>t] \geq \frac{1}{2} \quad \forall t \in \mathbb{R}
$$

which is a contradiction, as no distribution of S can satisfy such inequality.
Next, if $\mathbb{E}\left[X_{j}\right]=\mu_{j}$, then let $Y_{j}=X_{j}-X_{j}^{\prime}$, where X_{j}^{\prime} is an independent copy of X_{j}. In this way $\mathbb{E}\left[Y_{j}\right]=0, \operatorname{var}\left[Y_{j}\right]=2 \operatorname{var}\left[X_{j}\right]$ and

$$
\sum_{j=1}^{n} Y_{j}=S_{n}-S_{n}^{\prime} \xrightarrow{\text { a.s. }} S-S^{\prime} .
$$

Hence, by the previous argument we have

$$
\sum_{j=1}^{n} \operatorname{var}\left[X_{j}\right]<\infty
$$

and by the direct part of the theorem

$$
\sum_{j=1}^{n}\left(X_{j}-\mu_{j}\right)=S_{n}-\sum_{j=1}^{n} \mu_{j}
$$

converges almost surely. Since S_{n} converges by assumption, so must do $\sum \mu_{j}$.
Remark: Conditions (14) are necessary for convergence $S_{n} \xrightarrow{\text { a.s. }} S$ only under assumption of the boundedness of X_{j} (see homework). We also mention that instead of relying on the CLT in the proof of the converse direction, we may have followed a more conventional route, based on the inequality

$$
\mathbb{P}\left[\max _{1 \leq k \leq n}\left|S_{k}\right|>a\right] \geq 1-\frac{(a+c)^{2}}{\operatorname{var}\left[S_{n}\right]}
$$

The proof of this inequality, however, would appear rather unnatural without mentioning stopping times. Either method, however, really just shows that condition $\left|X_{j}\right| \leq c$ guarantees the width of the distribution of S_{n} has the same order as $\sqrt{\operatorname{var}\left[S_{n}\right]}$. (For unbounded X_{j}, rare large jumps may significantly increase the variance, while having very little effect on the bulk of the distribution of S_{n}).

Theorem 3 (Kolmogorov). Let X_{j} be independent, zero-mean with finite second moments and let

$$
M_{n}=\sup _{1 \leq k \leq n} \sum_{j=1}^{k} X_{j}, 1 \leq n \leq \infty
$$

Then we have for any $1 \leq n \leq \infty$

$$
\mathbb{E}\left[\left|M_{n}\right|^{2}\right] \leq 2 \sum_{j=1}^{n} \mathbb{E}\left[X_{j}^{2}\right]
$$

Proof: The case of $n=\infty$ follows from the case of finite n by the MCT. Let

$$
\begin{align*}
& S_{k}=X_{1}+\cdots+X_{k} \tag{20}\\
& A_{n}=\max _{1 \leq k \leq n} S_{k} \tag{21}
\end{align*}
$$

Note that for $n=1$ we clearly have

$$
\begin{equation*}
\mathbb{E}\left[A_{n}^{2}\right] \leq \mathbb{E}\left[S_{n}^{2}\right] \tag{22}
\end{equation*}
$$

Assume (by induction) that (22) is shown for all sums of upto $n-1$ random variables. Then, notice that

$$
A_{n}=X_{1}+\max \left(0, X_{2}, X_{2}+X_{3}, \ldots, \sum_{2}^{n} X_{j}\right)
$$

Since first and second terms are independent and $\mathbb{E}\left[X_{1}\right]=0$ we get

$$
\begin{align*}
\mathbb{E}\left[A_{n}^{2}\right] & =\mathbb{E}\left[X_{1}^{2}\right]+\mathbb{E}\left[\max \left(0, X_{2}, X_{2}+X_{3}, \ldots, \sum_{2}^{n} X_{j}\right)^{2}\right] \tag{23}\\
& \leq \mathbb{E}\left[X_{1}^{2}\right]+\mathbb{E}\left[\max \left(X_{2}, X_{2}+X_{3}, \ldots, \sum_{2}^{n} X_{j}\right)^{2}\right] \tag{24}\\
& \leq \sum_{j=1}^{n} \mathbb{E}\left[X_{j}^{2}\right] \tag{25}
\end{align*}
$$

where the first inequality follows from $\left(x^{+}\right)^{2} \leq x^{2}$ and the second one is by the inductive assumption. Thus (22) holds for all n.

By symmetry, we also must have

$$
\mathbb{E}\left[B_{n}^{2}\right] \leq \mathbb{E}\left[S_{n}^{2}\right], \quad B_{n}=\max _{1 \leq k \leq n}-S_{k}
$$

Finally, since $M_{n}^{2}=\max \left(A_{n}^{2}, B_{n}^{2}\right)$ and using $\max (a, b) \leq a+b$ we complete the proof.

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

[^0]: ${ }^{1}$ Some typical choices are $G(t)=t^{2},|t|{ }^{1+\epsilon}$ and $|t \log t|$.

