
    









1 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
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Lecture 19 

Uniform integrability, convergence of series 
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3. Convergence of series of independent summands 

CONVERGENCE IN L1 

Definition 1 (Convergence in mean). A sequence of integrable random varibles 

Xj is said to converge in L1 to X (also known as “convergence in mean”), 
1→ X if L 

denoted Xj 

E[|Xj − X|] → 0 j → ∞ .

Lp 
For p > 1 we define Xj → X if E[|Xj |p] < ∞ and E[|Xj − X|p] → 0. 

Some simple properties are given below: 

1L 
Proposition 1. (i) Xn → X implies E[|X|] < ∞. 

i.p. → X1L→ X implies Xj (ii) Xj 

1L→ X does not imply and is not implied by Xj 
a.s.→ X. (iii) Xj 

(iv) The space of integrable random variables on ( , F , P) modulo almost-

sure equivalence is a Banach space, denoted as L1( , F , P) with norm 

kXk1 , E[|X|]. Similarly for Lp( , F , P). 
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Proof: (i) Follows from taking expectation in the triangle inequality: 

|X| ≤ |Xn − X| + |Xn| (1) 

(ii) and (iii) is an exercise. (iv) is outside the scope of this class. 

Our goal is to show the following the following (third!) variation of the 

LLN: 

Proposition 2 (L1-LLN). Let Xj be iid random variables with finite expecta-

tion, then 
n 
X1 L1 Xj → E[X] 

n 
j=1 

The proof of this proposition follows by Theorem 1 and Corollary 1 below. 

UNIFORM INTEGRABILITY 

Definition 2. A collection of random variables X , α ∈ S is uniformly inte-

(iv) If G : R+ → R+ is such that → ∞ as t grows without bound1 then 

grable if 

k(b) , sup E[|X |1{|X | > b}] → 0 b → ∞ . (2) 

Some useful criteria for checking u.i.: 

Proposition 3. The following hold: 

(i) If E[|X|] < ∞ then {X} is u.i. 

(ii) When X
d 
= Y then {X }–u.i. iff {Y }–u.i. 

(iii) {X }-u.i. iff {X } is L1-bounded and uniformly continuous: 

sup E[|X |] < ∞ (3) 

sup E[|X |1E ] → 0 as P[E] → 0 (4) 

G(t) 
t 

sup E[G(|X |)] < ∞ ⇒ {X }–u.i. 

1 2 , |t|1+ǫSome typical choices are G(t) = t and |t log t|. 
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a.s. 
(v) If Xn → X and E[|Xn|] → E[|X|] then {Xn} is u.i. 

Proof: (i) follows from the MCT, (ii) is obvious from the definition, (v) is 

part of the homework. 

For (iii), first notice that E[|X |] ≤ k(b) + b for every b > 0 and thus (3) 

holds. Similarly, notice that for every b: 

E[|X |1E ] ≤ E[|X |1{|X | > b}] + bP[E] ≤ k(b) + bP[E] 

and thus by taking P[E] → 0 and b → ∞ we prove (4). Conversely, if (3) 

and (4) hold, but {X } is not uniformly integrable then for some sequence αk 

and ǫ0 > 0 we have 

E[|X 
k |1{|X 

k | > k}] ≥ ǫ0 > 0 (5) 

On the other hand, by (3) and Markov inequality P[|X 
k | > k] → 0. Conse-

quently, (5) contradicts (4). 

Finally, to see (iv) just notice that for every a > 0 there exists b > 0 such 
G(t)

that ≥ a for all t > b. Then, 
t 

G(|X |) ≥ a|X |1{|X | > b}

and taking expectation here we obtain: 

1 
k(b) ≤ sup E[G(|X |)] 

a 

from which (2) follows by taking a → ∞. 

As a simple consequence of the Proposition we get: 

Corollary 1. Let Xj be identically distributed (not necessarily independent!) 
n o 

P 1 n 
and integrable. Then collection of normalized sums Xj , n = 1, . . . 

n j=1 
is uniformly integrable. 

Proof: Indeed, by Proposition 3(i) and (ii) we get that {Xj , j = 1, . . .} is 
P 1 n 

uniformly integrable. Now defining Yn = Xj we have 
n j=1 

sup E[|Yn|] ≤ E[|X|] < ∞
n 

and on the other hand 

sup E[|Yn|1E ] ≤ sup E[|Xn|1E ] → 0 as P[E] → 0 ,
n n 
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where the last step follows by (4) applied to {Xj }. Uniform integrability of 

{Yj } then follows from Proposition 3 (iii). 

The main value of studying uniform integrability is the following: 

Theorem 1. We have 

L1 i.p. 
Xn → X ⇐⇒ Xn → X and {Xn}– u.i. 

Proof: The ⇒ direction follows from Markov’s inequality and Proposi-

tion 3(iii). Indeed, by (1) we have the inequality 

E[|Xn|1E ] ≤ E[|X|1E ] + E[|Xn − X|1E ] (6) 

For very large n ≥ n0 the second term is smaller than ǫ and hence 

� � � � 

lim sup sup E[|Xn|1E ] ≤ ǫ+lim sup E[|X|1E ] + max E[|Xn − X|1E ] 
P[E]→0 n P[E]→0 1≤n≤n0 

where the second term is zero by (4) because {|X|, |X1 − X|, . . . |Xn0 − X|} is 

a uniformly integrable collection. Consequently, taking ǫ → 0 we have shown 

sup E[Xn1E ] → 0 P[E] → 0 
n 

Setting E = in (6) we verify (4). Thus Proposition 3(iii) implies that the 

infinite collection {Xn} is also u.i. 

For the converse direction, we first notice that by characterization of conver-
a.s. 

gence in probability there must exist a subsequence Xnk → X. Then by Fatou’s 

lemma and (3) we have 

E[|X|] = E[lim inf |Xnk |] ≤ lim inf E[|Xnk ] < ∞
k k 

Thus, the limit random variable is integrable and consequently (Exercise!) col-
i.p. 

lection of nonnegative random variables {Yn, n = 1, . . .} is u.i. and Yn → 0 , 
where 

Yn , |Xn − X| .
Then, we have for every ǫ > 0 

E[Yn] = E[Yn1{Yn > ǫ}] + E[Yn1{Yn ≤ ǫ}] (7) 

≤ ǫ + E[Yn1{Yn > ǫ}] . (8) 

4 




 


3 

i.p. 
Since Yn → 0 we have P[Yn > ǫ] → 0. Then by (4) the second term converges 

to zero as n → ∞. Hence, for all ǫ > 0 

lim sup E[Yn] ≤ ǫ ,
n→∞ 

L1 
which shows Yn → 0. 

As a corollary we obtain a result we assumed before (in proving that conver-

gence of characteristic functions implies convergence in distribution). 

Corollary 2. Let fn(x) → f (x) ∀x ∈ R be a pointwise convergent sequence 

of pdfs. If Xn ∼ fn and X ∼ f then Xn →d 
X. 

P∞1 Proof. Let φ(x) = 2 f (x) + n=1 2
−n−1fn(x). It is clear that φ(x) is another 

pdf. Let ( , F , P) be defined as = R, F = B, P(dx) = φ(x)dx and define 

random variables Yn(x) = fn(x)/φ(x). Note that as a consequence of our 

definition of φ this ratio is well-defined almost everywhere: φ(x) = 0 implies 

fn(x) = 0 and P({x : φ(x) = 0}) = 0. Similarly, define Y (x) = f (x)/φ(x). 
a.s. 

We have Yn → Y . 
Furthermore, by construction E[|Yn|] = 1 = E[|Y |]. Thus, by Prop. 3(v) 

the collection {Yn} is u.i.. Consequently, from the previous Theorem we have 

E[|Yn − Y |] → 0. Rewriting this last statement explicitly, we have shown 
Z 

|fn(x) − f (x)|dx → 0 n → ∞ . (9) 
R

In particular, for any E ∈ B we have 
Z Z 

PXn [E] = fn(x) → f (x) = PX [E] ,
E E 

and taking E = (−∞, a] shows convergence of CDFs of Xn to the CDF of X
at every point a. 

(In fact, (9) is usually stated as “distribution of Xn converges to the distri-

bution of X in total-variation”. This is a stronger mode of convergence than 

convergence in distribution.) 

SUMS OF INDEPENDENT RANDOM VARIABLES 

A classical topic tightly related to the SLLN is convergence of sums 

n 
X

Sn = Xj 

j=1
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when Xj are independent (and not identically distributed, of course). There is 

a great deal results about properties of Sn, and here we will only mention a 

core principle: Convergence behavior of Sn, its central moments, concentration 
Pn 

properties, etc are largely encoded in the behavior of var[Xj ]. j=1 
We start with an example. Consider two independent sequences: 

1 1 
P[Xn = ±1] = , P[Xn = 0] = 1 − , (10) 

2n n 
1 1 

P[Yn = ± ] = . (11) 
n 2 

1 First, we notice that E[|Xn|] = E[|Yn|] = , so that sum of first moments 2n 
P P 

diverges at the same speed. Furthermore, both series Xn and Yn do not 

absolutely converge: 

" # " # 

X X 

P |Xn| = +∞ = P |Yn| = +∞ = 1 .
n n 

1 Indeed, for Yn this is obvious as |Yn| = , while for Xn it follows from Borel-
n 

Cantelli that: P[|Xn| = 1–i.o] = 1. 
P P 

So far, we see that Xn and Yn behave quite similarly. However, as we 

will see next it turns out that 

" # 

X X 

P Xn converges = 0 var[Xn] = +∞ (12) 

n n 
" # 

X X 

P Yn converges = 1 var[Yn] < +∞ (13) 

n n 

The explanation of this phenomena is the following: While both series diverge 

absolutely, the rapidly decreasing variances of terms in Yn allows for “sign can-
P 

cellation” effect to kick in making the series Yn converge (similar to conver-
P (−1)n 

gence of ). n n 
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Theorem 2 (Kolmogorov, Khintchine). Let Xj be independent and 

∞
X

µ , E[Xj ] , |µ| < ∞ , (14) 

j=1

∞
X

σ2 , var[Xj ] < ∞ (15) 

j=1

then 
n 
X

Sn = Xj 

j=1

converges almost surely and in L2 to a limit S with E[S] = µ, var[S] = σ2 . 
a.s. 

Conversely, if |Xj | ≤ c for some constant c and Sn → S with real-

valued S, then conditions (14)-(15) hold. 

Proof: We prove the direct part. Without loss of generality we assume 

E[Xj ] = 0. As we have shown in the homework (Cauchy criterion of almost 

sure convergence) it is sufficient to show that 

P[sup |Sn+k − Sn| > ǫ] → 0 n → ∞ (16) 
k≥1 

Kolmogorov’s inequality (see Theorem following the proof) shows that 

∞
X 

E[sup |Sn+k − Sn|2] ≤ 2 var[Xj ] . (17) 
k≥1 n 

By Chebyshev’s inequality we obtain then 

∞
X2 

P[sup |Sn+k − Sn| > ǫ] ≤ var[Xj ] (18) 
k≥1 ǫ2 

n 

Since sum of variances converges, the left-hand side of (18) decreases to 0 as 
a.s. 

n → ∞ and thus (16) is shown. The proof of Sn → S is complete. 

Notice that (17) with n = 0 shows that “life-time maximum” 

M∞ , sup |Sn|
n≥1 

has finite second moment. Since 

|Sn − S| ≤ 2M∞ ,
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by the DCT it follows that 

E[|Sn − S|2] → 0 

and similarly for E[Sn] → E[S], E[S2] → E[S]. n 

We proceed to proving the converse. First, assume E[Xj] = 0 and suppose 
a.s. 

Sn → S but 
n 
X

Dn = var[Xj ] ր ∞
j=1

Then, notice that 

E[|Xj |3] ≤ E[|Xj |2]c
and thus 

n 
X

E[|Xj |3] ≤ Dnc
j=1

Consequently, by the CLT for non-identically distributed random variables we 

have 
1 d √ Sn → Z ∼ N (0, 1) .
Dn 

On the other hand, we have for every t and s > 0 and for all n large enough 

p 

P[Sn > t] ≥ P[Sn > s Dn] . (19) 

d
Since Sn → S we also have for all t such that P[S = t] = 0 that 

P[Sn > t] → P[S > t] .

However, upon taking the limit in (19) as n → ∞ we get for all t and s > 0: 

P[S > t] ≥ P[Z > s] 

Taking s → 0 we get 
1 

P[S > t] ≥ ∀t ∈ R
2 

which is a contradiction, as no distribution of S can satisfy such inequality. 
′ ′ Next, if E[Xj ] = µj , then let Yj = Xj − Xj , where X is an independent j 

copy of Xj . In this way E[Yj] = 0, var[Yj ] = 2var[Xj ] and 

n 
X

a.s. 
Yj = Sn − S ′ → S − S ′ .n 

j=1
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Hence, by the previous argument we have 

n 
X

var[Xj ] < ∞
j=1

and by the direct part of the theorem 

n n 
X X

(Xj − µj) = Sn − µj 

j=1 j=1 
P 

converges almost surely. Since Sn converges by assumption, so must do µj . 

a.s. 
Remark: Conditions (14) are necessary for convergence Sn → S only 

under assumption of the boundedness of Xj (see homework). We also mention 

that instead of relying on the CLT in the proof of the converse direction, we may 

have followed a more conventional route, based on the inequality 

(a + c)2 
P[ max |Sk| > a] ≥ 1 − .

1≤k≤n var[Sn] 

The proof of this inequality, however, would appear rather unnatural without 

mentioning stopping times. Either method, however, really just shows that con-

dition |Xj | ≤ c guarantees the width of the distribution of Sn has the same order 
p 

as var[Sn]. (For unbounded Xj , rare large jumps may significantly increase 

the variance, while having very little effect on the bulk of the distribution of Sn). 

Theorem 3 (Kolmogorov). Let Xj be independent, zero-mean with finite second 

moments and let 

k 
X

Mn = sup Xj , 1 ≤ n ≤ ∞ .
1≤k≤n j=1 

Then we have for any 1 ≤ n ≤ ∞
n 
X

� � 

E |Mn|2 ≤ 2 E[Xj 
2] .

j=1 

Proof: The case of n = ∞ follows from the case of finite n by the MCT. 

Let 

Sk = X1 + · · · + Xk , (20) 

An = max Sk , (21) 
1≤k≤n 
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Note that for n = 1 we clearly have 

E[A2 ] ≤ E[S2] . (22) n n 

Assume (by induction) that (22) is shown for all sums of upto n − 1 random 

variables. Then, notice that 

n 
X

An = X1 + max(0,X2,X2 + X3, . . . , Xj) . 
2

Since first and second terms are independent and E[X1] = 0 we get 

n 
X

E[A2 ] = E[X1
2] + E[max(0,X2,X2 + X3, . . . , Xj )

2] (23) n 

2
n 
X 

≤ E[X1
2] + E[max(X2,X2 + X3, . . . , Xj )

2] (24) 

2 
n 
X 

≤ E[X2] , (25) j 

j=1 

where the first inequality follows from (x+)2 ≤ x2 and the second one is by the 

inductive assumption. Thus (22) holds for all n. 

By symmetry, we also must have 

E[Bn 
2] ≤ E[Sn 

2] , Bn = max −Sk .
1≤k≤n 

Finally, since M2 = max(A2 , B2) and using max(a, b) ≤ a + b we complete n n n 

the proof. 
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