## MASSACHUSETTS INSTITUTE OF TECHNOLOGY

## 1 Sum of independent random variables

Lemma 1. If $X$ and $Y$ are independent random variables, then

$$
\mathbb{P}(X+Y \leq z)=\mathbb{E}\left[F_{X}(z-Y)\right]=\mathbb{E}\left[F_{Y}(z-X)\right]
$$

Proof. We have

$$
\begin{aligned}
\mathbb{P}(X+Y \leq z) & =\mathbb{E}\left[1_{\{X+Y \leq z\}}\right] \\
& =\int_{\mathbb{R}^{2}} 1_{\{x+y \leq z\}} d\left(\mathbb{P}_{X} \times \mathbb{P}_{Y}\right)(x, y) \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} 1_{\{x+y \leq z\}} d \mathbb{P}_{X}(x)\right) d \mathbb{P}_{Y}(y) \\
& =\int_{\mathbb{R}} F_{X}(z-y) d \mathbb{P}_{Y}(y) \\
& =\mathbb{E}\left[F_{X}(z-Y)\right],
\end{aligned}
$$

where in the third inequality we used Fubini's Theorem.
If $X$ and $Y$ are continuous, $X+Y$ is also continuous, and its density can be derived by differentiating the above expression, and using Exercise 7 of HW 5 to bring the differentiation inside the integral.

## 2 Gaussian, Gamma, and Exponential distributions

## Theorem 1.

(a) If $N_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, then $N_{1}+N_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
(b) If $G_{1} \sim \operatorname{Gamma}\left(k_{1}, \theta\right)$ and $G_{2} \sim \operatorname{Gamma}\left(k_{2}, \theta\right)$, then $G_{1}+G_{2} \sim \operatorname{Gamma}\left(k_{1}+k_{2}, \theta\right)$.
(c) If $N \sim N(0,1)$, then $N^{2} \sim \operatorname{Gamma}(1 / 2,2)$
(d) If $X, Y \sim N(0,1)$, then $X^{2}+Y^{2} \sim \operatorname{Exp}(2)$.
(e) If $X, Y \sim N(0,1)$, then $\sqrt{X^{2}+Y^{2}}$ and $\arcsin \left(Y / \sqrt{X^{2}+Y^{2}}\right)$ are independent. Furthermore, $\arcsin \left(Y / \sqrt{X^{2}+Y^{2}}\right)$ is uniform over $(-\pi / 2, \pi / 2)$.

Proof. (a) It follows from applying the convolution formula for continuous random variables, and doing lots of algebra. The whole thing is even in Wikipedia:
https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_ variables
(b) It also follows from applying the convolution formula, and doing some algebra. For the sake of simplicity, we prove it for the case $\theta=1$.

$$
\begin{aligned}
f_{G_{1}+G_{2}}(z) & =\int_{0}^{z} f_{G_{1}}(x) f_{G_{2}}(z-x) \mathrm{d} x \\
& =\int_{0}^{z} \frac{x^{k_{1}-1} e^{-x}}{\Gamma\left(k_{1}\right)} \frac{(z-x)^{k_{2}-1} e^{-(z-x)}}{\Gamma\left(k_{2}\right)} \mathrm{d} x \\
& =e^{-z} \int_{0}^{z} \frac{x^{k_{1}-1}(z-x)^{k_{2}-1}}{\Gamma\left(k_{1}\right) \Gamma\left(k_{2}\right)} \mathrm{d} x \\
& =e^{-z} z^{k_{1}+k_{2}-1} \int_{0}^{1} \frac{t^{k_{1}-1}(1-t)^{k_{2}-1}}{\Gamma\left(k_{1}\right) \Gamma\left(k_{2}\right)} \mathrm{d} t \quad \text { valmost the density of a Beta }\left(k_{1}, k_{2}\right) \text { r.v. } \\
& =\frac{e^{-z} z^{k_{1}+k_{2}-1}}{\Gamma\left(k_{1}+k_{2}\right)}
\end{aligned}
$$

(c) We have

$$
\mathbb{P}\left(N^{2} \leq z\right)=\mathbb{P}(|N| \leq \sqrt{z})=2 \int_{0}^{\sqrt{z}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x
$$

Then, differentiating with respect to $z$, we obtain

$$
f_{N^{2}}(z)=\frac{z^{\frac{1}{2}-1} e^{-\frac{z}{2}}}{\sqrt{2 \pi}}
$$

which is the density of a $\operatorname{Gamma}(1 / 2,2)$.
(d) From (c), we know that $X^{2}$ and $Y^{2}$ are $\operatorname{Gamma}(1 / 2,2)$. Then, applying (b) we get that $X^{2}+Y^{2}$ is $\operatorname{Gamma}(1,2)$, which is the same as $\operatorname{Exp}(2)$.
(e) Note that $R=\sqrt{X^{2}+Y^{2}}$ and $\Theta=\arcsin \left(Y / \sqrt{X^{2}+Y^{2}}\right)$ correspond to the radius and angle in polar coordinates. As a result, the probability of the event $\left\{0 \leq \Theta \leq \theta_{0}\right\} \cap\left\{R \leq r_{0}\right\}$ can be computed using polar coordinates as follows:

$$
\begin{aligned}
\mathbb{P}\left(\left\{0 \leq \Theta \leq \theta_{0}\right\} \cap\left\{R \leq r_{0}\right\}\right) & =\int_{\left\{0 \leq \Theta \leq \theta_{0}\right\} \cap\left\{R \leq r_{0}\right\}} \frac{1}{2 \pi} e^{\frac{x^{2}+y^{2}}{2}} d x d y \\
& =\int_{0}^{\theta_{0}} \int_{0}^{r_{0}} \frac{1}{2 \pi} e^{\frac{r^{2}}{2}} r d r d \theta \\
& =\theta_{0} \int_{0}^{r_{0}} \frac{1}{2 \pi} e^{\frac{r^{2}}{2}} r d r \\
& =\mathbb{P}\left(0 \leq \Theta \leq \theta_{0}\right) \mathbb{P}\left(R \leq r_{0}\right) .
\end{aligned}
$$

Thus, they are independent, and $\Theta$ is uniform.

MIT OpenCourseWare
https://ocw.mit.edu

### 6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

