MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Midterm

Boilerplate:

- No collaboration
- No internet, laptops, or cellphones
- Closed books, Closed notes.
- Cheat sheet allowed.
- Total: 100 pts

Exercise 1 (20 pts). In honor of Laos' 65th independence day, some questions about independence.

1. Suppose A is independent of B, B is independent of C, and C is independent of A. Is $A \cap C$ necessarily independent of B ?

Prove or give counterexample
2. What if, in the above part, we also have that $B \cap C$ is independent of A ?

Prove or give counterexample
3. Suppose $A_{1} \supset A_{2} \supset A_{3} \supset \ldots$ and $A_{n} \rightarrow A$, and suppose that B is independent of every A_{n}. Is B necessarily independent of A ?
Prove or give counterexample
4. Suppose A is independent of itself. What does this say about $\mathbb{P}(A)$?

Don't laugh - this actually happens and is crucial to prove certain very strong theorems, which we will go over later!

Bonus: No points, but a gold star for anyone who knows what country Laos gained independence from!

Exercise 2 15pts . Let A_{1}, \ldots, A_{n} be events. Let $X(\omega)$ be the number of events that occurred when ω was the elementary outcome. Show

$$
\sum_{1 \leq i<j \leq n} \mathbb{P}\left[A_{i} \cap A_{j}\right]=\mathbb{E}\left[\frac{X(X-1)}{2}\right] .
$$

Use this to prove

$$
\mathbb{P}\left[\cup_{i=1}^{n} A_{i}\right] \geq \sum_{i=1}^{n} \mathbb{P}\left[A_{i}\right]-\sum_{1 \leq i<j \leq n} \mathbb{P}\left[A_{i} \cap A_{j}\right]
$$

Hint: rewrite this as $\mathbb{E}[f(X)] \geq 0$.)
Exercise 3 15pts . Let X be a random variable taking values on non-negative integers $\mathbb{Z}_{+}=\{0,1, \ldots\}$. It has the following amazing property: There is a constant $c>0$ such that for any bounded function $f: \mathbb{Z}_{+} \rightarrow \mathbb{R}$ we have

$$
\mathbb{E}[f(X)]=c \mathbb{E}[X f(X-1)] .
$$

Note: c does not depend on f.) Find distribution of X.
Exercise 4 20pts. Let X, Y be two independent standard normal random variables $\mathcal{N}(0,1)$. Let $Z=X^{2}+Y^{2}$. Recall you don't need to prove it) that Z has pdf $f_{Z}(z)=\frac{1}{2} e^{-z / 2}$, i.e. $Z \sim \operatorname{Exp}(1 / 2)$.

1. Show that if U is independent of Z and uniform on $[0,2 \pi)$ then $\sqrt{Z} \sin m U$ is standard normal for any positive integer m.
2. Show that $T=\frac{2 X Y}{\sqrt{X^{2}+Y^{2}}}$ is standard normal. Hint: use polar coordinates Exercise 5 30pts . Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. Bernoulli random variables coin tosses, such that $\mathbb{P}\left(X_{1}=H\right)=p \in(0,1)$. Let

$$
L_{n}=\max \left\{m \geq 0: X_{n}=H, X_{n+1}=H, \ldots, X_{n+m-1}=H, X_{n+m}=T\right\}
$$

be the length of the run of heads starting from the n-th coin toss. Prove that

$$
\limsup _{n \rightarrow \infty} \frac{L_{n}}{\log (n)}=\frac{1}{\log (1 / p)} \quad \text { a.s.. }
$$

Steps:

1. Show that events $\left\{L_{n} \geq r\right\},\left\{L_{n+r} \geq r\right\},\left\{L_{n+2 r} \geq r\right\}, \ldots$ are jointly independent.
2. Show that for any random variables Z_{n}

$$
\mathbb{P}\left[Z_{n}>\beta \text {-i.o. }\right]=0 \quad \Rightarrow \quad \lim \sup Z_{n} \leq \beta \text { a.s. }
$$

and

$$
\mathbb{P}\left[Z_{n}>\beta \text {-i.o. }\right]=1 \quad \Rightarrow \quad \lim \sup Z_{n} \geq \beta \text { a.s. }
$$

3. Prove 1 . Hint: Borel-Cantelli

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

