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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 

Lecture 3 

CONDITIONING AND INDEPENDENCE 

Most of the material in this lecture is covered in [Bertsekas & Tsitsiklis] Sec-

tions 1.3-1.5 and Problem 48 (or problem 43, in the 1st edition), available at 

http://athenasc.com/Prob-2nd-Ch1.pdf. Solutions to the end of chapter problems 

are available at:http://athenasc.com/prob-solved 2ndedition.pdf. These lecture 

notes provide some additional details and twists. 
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CONDITIONAL PROBABILITY 

Definition 1. Consider a probability space ( , F , P), and an event B ∈ F 
with P(B) > 0. For every event A ∈ F , the conditional probability that A 
occurs given that B occurs is denoted by P(A | B) and is defined by 

P(A ∩ B) 
P(A | B) = . 

P(B) 
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Theorem 1. Let ( , F , P) be a probability space. 

(a) If B is an event with P(B) > 0, then P( | B) = 1, and for any sequence 

{Ai} of disjoint events, we have 

∞
X 

� � 

∪∞
P Ai | B = P(Ai | B). i=1 

i=1 

As a result, suppose PB : F → [0, 1] is defined by PB(A) = P(A | B). 
Then, PB is a probability measure on ( , F). 

(b) Let A be an event. If the events Bi, i ∈ N, form a partition of , and 

P(Bi) > 0 for every i, then 

∞
X 

P(A) = P(A | Bi)P(Bi). 
i=1 

In particular, if B is an event with P(B) > 0 and P(Bc) > 0, then 

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc). 

(c) (Bayes’ rule) Let A be an event with P(A) > 0. If the events Bi, i ∈ N, 

form a partition of , and P(Bi) > 0 for every i, then for every i 

P(Bi)P(A | Bi) P(Bi)P(A | Bi) 
P(Bi | A) = = P . 

∞
P(A) j=1 P(Bj )P(A | Bj ) 

(d) For any sequence {Ai} of events, we have 

∞
Y 

P(∩∞ Ai) = P(A1) P(Ai|A1 ∩ · · · ∩ Ai−1), i=1 
i=2 

as long as all conditional probabilities are well defined. 

Proof. 

(a) We have P( | B) = P( ∩ B)/P(B) = P(B)/P(B) = 1. Also 
� � 

� � P B ∩ (∪∞ Ai) P(∪∞ (B ∩ Ai)) i=1 i=1 ∪∞
P Ai | B = = . i=1 

P(B) P(B) 

Since the sets B ∩ Ai, i ∈ N are disjoint, countable additivity, applied to the 
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right-hand side, yields 

P ∞∞
� � P(B ∩ Ai) X 

∪∞ i=1 
P Ai | B = = P(Ai | B), i=1 

P(B) 
i=1 

as claimed. 

(b) We have 

� � 

� � 

P(A) = P(A ∩ ) = P A ∩ (∪∞ Bi) = P ∪∞ (A ∩ Bi) i=1 i=1 
∞ ∞
X X 

= P(A ∩ Bi) = P(A | Bi)P(Bi). 
i=1 i=1 

In the second equality, we used the fact that the sets Bi form a partition of 

. In the next to last equality, we used the fact that the sets Bi are disjoint 

and the countable additivity property. 

(c) This follows from the fact 

P(Bi | A) = P(Bi ∩ A)/P(A) = P(A | Bi)P(Bi)/P(A), 

and the result from part (c). 

(d) Note that the sequence of events ∩n is decreasing and converges to i=1
Ai

∩∞ Ai. By the continuity property of probability measures, we have P ∩∞

i=1 i=1 
� � � 

Ai = limn→∞ P ∩i
n 
=1 Ai . Note that 

� � P(A1 ∩ A2) P(A1 ∩ A2 ∩ A3) P(A1 ∩ · · · ∩ An) 
∩n 

P Ai = P(A1) · · · · ·i=1 
P(A1) P(A1 ∩ A2) P(A1 ∩ · · · ∩ An−1) 

n 
Y 

= P(A1) P(Ai | A1 ∩ · · · ∩ Ai−1). 
i=2 

Taking the limit, as n → ∞, we obtain the claimed result. 

INDEPENDENCE 

Intuitively we call two events A, B independent if the occurrence or nonoccur-

rence of one does not affect the probability assigned to the other. The following 

definition formalizes and generalizes the notion of independence. 
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Definition 2. Let ( , F .P) be a probability space. 

(a) Two events, A and B, are said to be independent if P(A∩B) = P(A)P(B). 
Notation: A ⊥ B. If P(B) > 0, an equivalent condition is P(A) = 
P(A | B). 

(b) Let S be an index set (possibly infinite, or even uncountable), and let {As |
s ∈ S} be a family (set) of events. The events in this family are said to be 

independent if for every finite subset S0 of S, we have 

Y 

� � 

P ∩s∈S0 As = P(As). 
s∈S0 

(c) Let F1 ⊂ F and F2 ⊂ F be two ˙-fields. We say that F1 and F2 are 

independent (write F1 ⊥ F2) if any two events A1 ∈ F1 and A2 ∈ F2 are 

independent. 

(d) More generally, let S be an index set, and for every s ∈ S, let Fs be a ˙-

field contained in F . We say that the ˙-fields Fs are independent if the 

following holds. If we pick one event As from each Fs, the events in the 

resulting family {As | s ∈ S} are independent. 

Example. Consider an infinite sequence of fair coin tosses, under the model constructed 

in the Lecture 2 notes. The following statements are intuitively obvious (although a 

formal proof would require a few steps). 

(a) Let Ai be the event that the ith toss resulted in a “1”. If i 6= j, the events Ai and Aj

are independent. 

(b) The events in the (infinite) family {Ai | i ∈ N} are independent. This statement 

captures the intuitive idea of “independent” coin tosses. 

(c) Let Fn be the collection of all events whose occurrence can be decided by looking 

at the results of tosses 2n and 2n + 1. (Note that each Fn is a ˙-field comprised of 

finitely many events.) Then, the families Fn, n ∈ N, are independent. 

(d) Let F1 (respectively, F2) be the collection of all events whose occurrence can be 

decided by looking at the results of the coin tosses at odd (respectively, even) times 

n. More formally, Let Hi be the event that the ith toss resulted in a 1. Let C be 

the collection of events C = {Hi | i is odd}, and finally let F1 = ˙(C), so that 

F1 is the smallest ˙-field that contains all the events Hi, for odd i. We define F2 
similarly, using even times instead of odd times. Then, the two ˙-fields F1 and F2 
turn out to be independent. This statement captures the intuitive idea that knowing 

the results of the tosses at odd times provides no information on the results of the 

tosses at even times. 
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2.1 How to check independence of ˙-algebras? p-systems. 

How can one establish that two complicated ˙-fields (e.g., as in the last example 

above) are independent? It turns out that one only needs to check indepen-

dence for smaller collections of sets – see the theorem below. This is similar to 

the question of uniqueness of extension that we discussed in previous Lecture. 

There we have seen an example of a collection of sets C and a pair of distinct 

probability measures that coincide on C but differ on ˙(C). At the same time 

we have shown that measures coinciding on an algebra A must necessarily co-

incide on ˙(A). Similarly, one can show that checking independence between 

˙-algebras can be reduced to checking independece between any two generating 

algebras. In fact, in both of these questions we can reduce to checking collec-

tions that are even smaller than algebras. 

Definition 3. A collection of sets � closed under finite intersections (that is, 

A, B ∈ � ⇒ A ∩ B ∈ �) is called a p-system. 

Examples of p-systems are intervals (a, b) on R, rectangles (a, b)× (c, d) on 

R
2 , convex sets in Rd , etc. 

Theorem 2. Let �1 and �2 be p-systems and Fi = ˙(�i), i = 1, 2. If 

P(A ∩ B) = P(A)P(B) (1) 

for every A ∈ �1, B ∈ �2, then F1 and F2 are independent. 

Proof. Fix an arbitrary B ∈ �2 and define a collection of sets 

LB , {E ∈ F1 : P(E ∩ B) = P(E)P(B)}. 

By assumption �1 ⊆ LB. We also have: 

1. Clearly ∈ LB . 

2. If A1 ⊂ A2 and both belong to LB then from 

P((A2 \ A1) ∩ B) + P(A1 ∩ B) = P(A2 ∩ B) 

we conclude that A2 \ A1 ∈ LB . 

3. LB is a monotone class. Indeed, if An ր A and An ∈ LB then An ∩B ր
A ∩ B and by continuity of P we have 

P(A ∩ B) = lim P(An ∩ B) = P(B) · lim P(An) = P(B)P(A) , 
n→∞ n→∞ 

implying A ∈ LB. Similar argument holds for An ց A. 
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It turns out that 1 and 2 imply that LB contains (�1) (see Proposition to 

follow). Thus by the monotone class theorem LB = F1. Thus (1) holds for all 

A ∈ F1 and B ∈ �2. By symmetry it also holds for all A ∈ �1 and B ∈ F2. 

And applying the above argument again (with �2 replaced by F2) for all of F1 
and F2. 

Proposition 1. Let � be a p-system on . Let D be a collection containing � 
satisfying the following: 

1. ∈ D

2. For all A, B ∈ D such that A ⊂ B we have B \ A ∈ D (i.e. D closed 

under “punching holes”). 

Then D ⊃ (�). Thus (�) is the smallest collection of sets containing �∪{ } 
and closed under punching holes. 

Proof. Let D0 be the smallest collection of sets containing � and satisfying 

conditions 1 and 2. We will show D0 ⊃ (�). Note that any p-system satisfying 

1 and 2 is automatically an algebra. Thus it is sufficient to prove D0 is a p-

system. Fix C ∈ � and let 

LC = {A ∈ D0 : A ∩ C ∈ D0} 

On one hand, LC contains � and . On the other hand, LC is closed under 

punching holes: For A ⊂ B we have (B \ A) ∩ C = (B ∩ C) \ (A ∩ C). Thus 

LC = D0 by minimality of D0. Hence D0 is closed under intersections with 

elements of �. 

Next take an arbitrary D ∈ D0. We have 

LD = {A ∈ D0 : A ∩ D ∈ D0} 

containing � (and ) by the previous argument and closed under punching holes 

(same reasoning). Thus LD = D0 and D0 is closed under intersections. 

Exercise 1. Let � be a p-system and A = (�) the algebra generated by it. Suppose 
P and Q are two finitely additive non-negative set-functions with P ( ) = Q( ) = 1. 
Show that if P and Q agree on � then they agree on A. (Hint: As usual let D = {E ∈ 
A : P (E) = Q(E)} and use the proposition above). 

Exercise 2. Show that (C) consists of Ø, and all sets that can be written in the 
sum-of-products form (this should remind you of disjunctive normal form) 

(A1,1 ∩ . . . ∩ A1,n1 ) ∪ . . . ∪ (Am,1 ∩ . . . ∩ Am,nm ) , 

with Ai,j ∈ C or Ac ∈ C. i,j 

6 

α

Ω

Ω

α

α

Ω

α

Ω

Ω

α
Ω Ω

α Ω






3 THE BOREL-CANTELLI LEMMA 

The Borel-Cantelli lemma is a tool that is often used to establish that a certain 

event has probability zero or one. Given a sequence of events An, n ∈ N, 

the event {An i.o.} (read as “An occurs infinitely often”) is defined to be the 

event consisting of all ! ∈ that belong to infinitely many An. Show that 

equivalently 

∞ ∞
\ [ 

{An i.o.} = Ai. 
n=1 i=n 

This event is also sometimes denoted by lim sup An. n→∞ 

Theorem 3. (Borel-Cantelli lemma) Let {An} be a sequence of events and 

let A = {An i.o.}. 

P

∞
(a) If P(An) < ∞, then P(A) = 0. n=1 

P

∞
(b) If P(An) = ∞ and the events An, n ∈ N, are independent, then n=1 

P(A) = 1. 

Remark: The result in part (b) is not true without the independence assumption. 

Indeed, consider an arbitrary event C such that 0 < P(C) < 1 and let An = C 
P 

for all n. Then P({An i.o.}) = P(C) < 1, even though P(An) = ∞. n 

The following lemma is useful here and in may other contexts. 

Lemma 1. Suppose that 0 ≤ pi ≤ 1 for every i ∈ N. Then: 

∞ ∞
X Y 

pi = ∞ ⇒ (1 − pi) = 0 (2) 

i=1 i=1 
∞ ∞
X Y 

pi = ∞ ⇐ (1 − pi) = 0, pi < 1 (3) 

i=1 i=1 

Proof. Note that log(1− x) is a concave function of its argument, and its deriva-

tive at x = 0 is −1. It follows that log(1 − x) ≤ −x, for x ∈ [0, 1]. We then 
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have 

∞ k 
� � 

Y Y 

log (1 − pi) = log lim (1 − pi) 
k→∞ 

i=1 i=1 
k 
Y 

≤ log (1 − pi) 
i=1 

k 
X 

= log(1 − pi) 
i=1 
k 

X 

≤ (−pi). 
i=1 

Q

∞This is true for every k. By taking the limit as k → ∞, we obtain log (1 − i=1 
Q

∞ pi) = −∞, and (1 − pi) = 0. i=1 
For the converse statement, note that under pi < 1 we have 

∞ ∞
Y Y 

(1 − pi) = 0 ⇐⇒ ∀n (1 − pi) = 0 
i=1 i=n 

If pi 6→ 0 the result is automatic. Hence, we may also assume pi → 0. Then 

taking n so large that pi ≤ 1 − e−1 for all i ≥ n we may apply the lower bound 

e 
−1 log(1 − x) ≥ − x ∀0 ≤ x ≤ 1 − e . 

e − 1 

Then, for arbitrary large C we have for all sufficiently large n 

n n 
Y X e 

−C ≥ log (1 − pi) ≥ − pi , 
e − 1 

i=1 i=1 
P

∞ ′ ′ implying pi ≥ C for all C > 0. i=1 

Proof of Theorem 3. 

P P 

∞ ∞(a) The assumption P(An) < ∞ implies that limn→∞ P(Ai) = 0. n=1 i=n 
Note that for every n, we have A ⊂ ∪∞ Ai. Then, the union bound implies i=n 
that 

∞
X 

� � 

∪∞
P(A) ≤ P Ai ≤ P(Ai). i=n 

i=n 

We take the limit of both sides as n → ∞. Since the right-hand side con-

verges to zero, P(A) must be equal to zero. 
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(b) Let Bn = ∪∞ Ai, and note that A = ∩∞ Bn. We claim that P(Bc ) = 0. i=n n=1 n 
This will imply the desired result because 

∞
X 

� � 

P(Ac) = P ∪∞ Bc ≤ P(Bc ) = 0. n=1 n n 
n=1

Let us fix some n and some m ≥ n. We have, using independence (show 

that independence of {An} implies independence of {Ac }) n 

m m
Y Y 

� � 

P(∩m Ac 
P(Ac . i=n i ) = i ) = 1 − P(Ai) 

i=n i=n 

P P 

∞ ∞The assumption P(Ai) = ∞ implies that P(Ai) = ∞. Using i=1 i=n 
Lemma 1, with the sequence {P(Ai) | i ≥ n} replacing the sequence {pi}, 

we obtain 

m
Y 

� � 

P(Bc ) = P(∩∞ Ac
i ) = lim P(∩m Ac

i ) = lim 1 − P(Ai) = 0, n i=n i=n 
m→∞ m→∞

i=n 

where the second equality made use of the continuity property of probability 

measures. 
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