MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Readings:

Notes from Lectures 11-13.
[GS], Section 4.1-4.8 and 5.1-5.2
[Cinlar], Chapter IV.
Exercise 1. (Continuous-discrete Bayes rule) Let K be the number of heads obtained in six (conditionally) independent coins of a biased coin whose probability of heads is itself a random variable Z, uniformly distributed over $[0,1]$. Find the conditional PDF of Z given K, and calculate $\mathbb{E}[Z \mid K=2]$. You can use the following formula,

$$
\int_{0}^{1} y^{\alpha}(1-y)^{\beta} d y=\frac{\alpha!\beta!}{(\alpha+\beta+1)!},
$$

known to be valid for positive integer α and β.

Exercise 2. Let X and Y be independent exponential random variables with parameter 1. Find the joint density function of $U=X+Y$ and $V=X /(X+Y)$, and deduce that V is uniformly distributed on $[0,1]$.

Exercise 3. A point (X, Y) is picked at random uniformly in the unit circle. Find the joint density of R and X, where $R^{2}=X^{2}+Y^{2}$.

Exercise 4. Let X_{1}, X_{2}, X_{3} be independent random variables, uniformly distributed on $[0,1]$.
a. What is the probability that three rods of lengths X_{1}, X_{2}, X_{3} can be used to make a triangle? (That is, that the largest one is smaller than the sum of the other two.)
b. What is the probability distribution of the second largest X_{k}, i.e. $X^{(2)}$.

Exercise 5. A stick is broken, at a location chosen uniformly at random. Find the average ratio of the lengths of the smaller and larger pieces.

Exercise 6. Let $X \sim \Gamma(a, c), U, V \sim \Gamma(a, \sqrt{2 c})$ and $Y \sim \mathcal{N}(0,1)$, all jointly independent. Compare the distribution of $U-V$ and $\sqrt{X} Y$. (Hint: compute MGFs using conditional expectation).

Exercise 7. Let $X, Y \sim \Gamma(1, c)$ be independent and $Z=X+Y$. Describe conditional distribution $P_{Y \mid Z}$. (Ideally, you want to describe it as a Markov kernel $K(z, d y)$, however, full credit will be given for just specifying the conditional pdf or cdf).

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

