The Jacobian Formula: functions are linear if you look really close

Notational remark: The bolded variables are either matrices or vectors; I like to do that to visually remind myself what is what exactly. This will be a little confusing because usually bolded uppercase letters are matrices, lower case are vectors, but here I'm also adding random vectors as bolded upper-case letters. Also, $|\cdot|$, when applied to a matrix, is the absolute value of the determinant.

The multivariate derived-distribution problem is set up as follows: $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ are jointly continuous with density function $f_{\boldsymbol{X}}$ over \mathbb{R}^{n}. We also have a measurable function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and we define the random variable $\boldsymbol{Y}=g(\boldsymbol{X})$. Our goal is to find a good means of finding the distribution of \boldsymbol{Y} in terms of the distribution of \boldsymbol{X}.

In particular, we will make an assumption about g which is "well-behaved" in a few ways - and allows us to use the Jacobian formula. We will assume the following:

Assumption 0.1. Let $U \subset \mathbb{R}^{n}$ be an open set, and let $g: U \rightarrow \mathbb{R}^{n}$ be

- continuously differentiable
- an injection; and
- has non-vanishing determinant of the Jacobian, i.e. $\frac{\partial g}{\partial \boldsymbol{x}} \neq 0$.

We also have the following fact, which is super useful:
Fact 0.1. Define V as the image $g(U)$. Then if $g: U \rightarrow V$ satisfies the assumption: (i) V is open; (ii) $g^{-1}: V \rightarrow U$ is well-defined; (iii) g^{-1} satisfies the assumption as well.

Let us define $\boldsymbol{J}(\boldsymbol{y})$ to be the Jacobian (first-derivative, basically) of g^{-1} at \boldsymbol{y}. Basically, around any point \boldsymbol{y}, we consider a tiny cube A of volume δ^{n} and note that the probability mass inside came from the parallelepiped $B=g^{-1}(A) \approx \boldsymbol{J}(\boldsymbol{y}) A$. The volume of it is then $\approx|\boldsymbol{J}(\boldsymbol{y})| \delta^{n}$ (linear algebra fact), and the density inside is approximately $f_{\boldsymbol{X}}\left(g^{-1}(\boldsymbol{y})\right)$. Thus, the mass $(\sim \boldsymbol{Y})$ inside A should be equal to the mass $(\sim \boldsymbol{X})$ in B, giving:

$$
f_{\boldsymbol{y}}(\boldsymbol{y}) \cdot \delta^{n} \approx f_{\boldsymbol{X}}\left(g^{-1}(\boldsymbol{y})\right) \cdot|\boldsymbol{J}(\boldsymbol{y})| \delta^{n}
$$

Dividing both sides by δ^{n} and then taking $\delta \searrow 0$ (which turns the \approx into $=$), we get the actual Jacobian formula:

$$
f_{\boldsymbol{Y}}(\boldsymbol{y})=f_{\boldsymbol{X}}\left(g^{-1}(\boldsymbol{y})\right) \cdot|\boldsymbol{J}(\boldsymbol{y})|
$$

For convenience, we will also be using the matrix $\boldsymbol{M}:=\frac{\partial g}{\partial \boldsymbol{x}}\left(g^{-1}(\boldsymbol{y})\right.$) (forward Jacobian of g measured at $\boldsymbol{x}=g^{-1}(\boldsymbol{y})$). We will use the fact that $|\boldsymbol{J}(\boldsymbol{y})|=|\boldsymbol{M}|^{-1}$.

An innocent little problem using the Jacobian formula

Problem 0.1. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ be jointly continuous with PDF $f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\exp \left(-x_{1}-\right.$ x_{2}) for $x_{1}, x_{2}>0$, and let

$$
\boldsymbol{Y}=\left(Y_{1}, Y_{2}\right)=\left(X_{1}+X_{2}, X_{1} X_{2}\right)
$$

We want to know: (a) what is the joint PDF of \boldsymbol{Y}, and (b) are Y_{1}, Y_{2} independent?
Well, to (b) we can already answer "no" because if $Y_{2} \geq 100$, then Y_{1} has to be bigger than 1 and that basically settles it.

$$
\text { (Formally, we say } \left.\mathbb{P}\left[\left(Y_{2} \geq 100\right) \cap\left(Y_{1} \leq 1\right)\right]=0 \neq \mathbb{P}\left[Y_{2} \geq 100\right] \cdot \mathbb{P}\left[Y_{1} \leq 1\right]\right)
$$

But let's do this in the principled way.
First, we have an issue that g is not one-to-one (note that $g\left(x_{1}, x_{2}\right)=g\left(x_{2}, x_{1}\right)$); we will solve this by means of order statistics. We can assume that $x_{1} \neq x_{2}$ because $\left\{\boldsymbol{x}: x_{1}=x_{2}\right\}$ has Lebesgue measure 0 . Define:

$$
Z_{1}=\min \left(X_{1}, X_{2}\right) \text { and } Z_{2}=\max \left(X_{1}, X_{2}\right)
$$

From the order-statistics problem in the homework, we know that the $\operatorname{PDF} f_{Z}$ is

$$
f_{\boldsymbol{Z}}\left(z_{1}, z_{2}\right)= \begin{cases}2 \exp \left(-z_{1}-z_{2}\right) & \text { if } 0<z_{1}<z_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Note here that our set $U \subset \mathbb{R}^{2}$ is now

$$
U=\left\{\boldsymbol{z}: 0<z_{1}<z_{2}\right\}
$$

which is indeed open, and g remains the same and is therefore still continuously differentiable. Finally, if we look at the Jacobian of g, we find that

$$
\frac{\partial g}{\partial \boldsymbol{z}}=\left[\begin{array}{cc}
1 & 1 \\
z_{2} & z_{1}
\end{array}\right] \text { and so } \frac{\partial g}{\partial \boldsymbol{z}}=z_{2}-z_{1}
$$

whose determinant is not 0 since $z_{2} \neq z_{1}$.
Ok, let's take a deep breath and remind ourselves of the Jacobian formula:

$$
f_{\boldsymbol{Y}}(\boldsymbol{y})=f_{\boldsymbol{Z}}\left(g^{-1}(\boldsymbol{y})\right)|\boldsymbol{J}(\boldsymbol{y})|
$$

(hidden is a $\mathbf{1}_{V}(\boldsymbol{y})$ term, i.e. this only works on the range of g). We'll need to find these two parts, $f_{\boldsymbol{Z}}\left(g^{-1}(\boldsymbol{y})\right)$ and $|\boldsymbol{J}(\boldsymbol{y})|$.

The Density at the Inverse: This luckily turns out to be quite easy, since by definition $z_{1}+z_{2}=y_{1}$ when $\boldsymbol{y}=g(\boldsymbol{z})$. Therefore, the density can just be computed:

$$
f_{\boldsymbol{Z}}\left(g^{-1}(\boldsymbol{y})\right)=2 \exp \left(-y_{1}\right)
$$

The Determinant: For this, we gotta look at g^{-1}. Given \boldsymbol{y}, what is \boldsymbol{z} ? Well, solving gives

$$
y_{2}=z_{1}\left(y_{1}-z_{1}\right)=z_{2}\left(y_{1}-z_{2}\right)
$$

which can be solved quadratically. z_{2} is the max, so

$$
z_{1}=\frac{y_{1}-\sqrt{y_{1}^{2}-4 y_{2}}}{2} \quad \text { and } \quad z_{2}=\frac{y_{1}+\sqrt{y_{1}^{2}-4 y_{2}}}{2}
$$

As a bit of a sanity check, let's look at $y_{1}^{2}-4 y_{2}$, and hope that it's positive. We know

$$
y_{1}^{2}-4 y_{2}=\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2} \geq 0 \text { because it's the square of AM-GM }
$$

So our receiving set V is just

$$
V=\left\{\boldsymbol{y}: y_{1}^{2}-4 y_{2} \geq 0\right\}
$$

Alright, enough putting it off: what about the Jacobian $\boldsymbol{J}(\boldsymbol{y})$ of g^{-1} ? To make things supersimple, however, note that we already have the determinant of the matrix \boldsymbol{M}, which is $z_{1}-z_{2}$ (the absolute value of $\operatorname{det}(\boldsymbol{M})$ (at \boldsymbol{z}) is $z_{2}-z_{1}$); and we know z_{1} and z_{2} in terms of y_{1} and y_{2}. Thus, we get

$$
\operatorname{det}(\boldsymbol{M})=z_{1}-z_{2}=\frac{y_{1}-\sqrt{y_{1}^{2}-4 y_{2}}}{2}-\frac{y_{1}+\sqrt{y_{1}^{2}-4 y_{2}}}{2}=\sqrt{y_{1}^{2}-4 y_{2}}
$$

and therefore

$$
\operatorname{det}(\boldsymbol{J}(\boldsymbol{y}))=\operatorname{det}(\boldsymbol{M})^{-1}=-\frac{1}{\sqrt{y_{1}^{2}-4 y_{2}}}
$$

Now, we take the absolute value of this to get what we needed:

$$
|\boldsymbol{J}(\boldsymbol{y})|=\frac{1}{\sqrt{y_{1}^{2}-4 y_{2}}}
$$

Finally, we can put everything together that we needed - not forgetting the term that we hid (indicator of V) - to get

$$
f_{\boldsymbol{Y}}(\boldsymbol{y})=f_{\boldsymbol{Z}}\left(g^{-1}(\boldsymbol{y})\right)|\boldsymbol{J}(\boldsymbol{y})| \mathbf{1}_{V}(\boldsymbol{y})=\frac{2 \exp \left(-y_{1}\right)}{\sqrt{y_{1}^{2}-4 y_{2}}} \mathbf{1}_{\left\{y_{1}^{2}-4 y_{2}>0\right\}}
$$

As an afterthought, we get part (b) - are they indepedent? - is "no" (as we already knew) because this PDF does not factor nicely into a y_{1} term and a y_{2} term.

Conditional probability example

Problem 0.2. Alice sends a bit to Bob; this is some $X \in\{-1,1\}$, and the probability of $X=-1$ or 1 is $1 / 2$ for each. However, the communication channel is noisy - in particular, it introduces some Gaussian noise $N \sim \mathcal{N}(0,1)$ (which is independent from the transmitted bit). Bob then receives $Y=X+N$, and wants to remove the noise and recover the original bit.

Bob finds that $Y=y$, for some $y \in \mathbb{R}$. Compute the probability $\mathbb{P}[X=1 \mid Y=y]$.
This is a problem about conditioning with probability densities. Let $f_{Y \mid X}$ be the conditional density of Y given X, and let f_{Y} be the marginal density of Y. In this problem we want something of the form $\mathbb{P}[X \mid Y]$ but are really given things of the form $\mathbb{P}[Y \mid X]$ (and $\mathbb{P}[X])$ - so a natural approach is to use Bayes' formula.

Defining p_{X} to be the probability mass function of X, we get

$$
\mathbb{P}[X=1 \mid Y=y]=\frac{p_{X}(1) \cdot f_{Y \mid X}(y \mid 1)}{f_{Y}(y)}
$$

Note that because the noise is $\mathcal{N}(0,1)$ (and independent of X), note that $Y \sim \mathcal{N}(X, 1)$ for whatever X is. Therefore, the density

$$
f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-x)^{2}}{2}}
$$

Furthermore, f_{Y} is built as an average of these (recalling that X can only take two values):

$$
f_{Y}(y)=\sum_{x} p_{X}(x) \cdot f_{Y \mid X}(y \mid x)=\frac{\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y+1)^{2}}{2}}+\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-1)^{2}}{2}}}{2}=\frac{1}{\sqrt{2 \pi}} \frac{e^{-\frac{(y+1)^{2}}{2}}+e^{-\frac{(y-1)^{2}}{2}}}{2}
$$

because $p_{X}(x)=1 / 2$ for $x=-1,1$. Plugging in all of these into the formula above yields (after a bunch of cancellations with the $1 / 2$ and the $1 / \sqrt{2 \pi}$):

$$
\mathbb{P}[X=1 \mid Y=y]=\frac{p_{X}(1) \cdot f_{Y \mid X}(y \mid 1)}{f_{Y}(y)}=\frac{e^{-\frac{(y-1)^{2}}{2}}}{e^{-\frac{(y+1)^{2}}{2}}+e^{-\frac{(y-1)^{2}}{2}}}=\frac{e^{y}}{e^{-y}+e^{y}}
$$

(the last step is just an algebraic simplification, cancelling out the $e^{-\frac{y^{2}+1}{2}}$ on the top and bottom).
Notably, this function has the following natural properties for this problem (sanity check):

- $\lim _{y \rightarrow-\infty} \mathbb{P}[X=1 \mid Y=y]=0$ and $\lim _{y \rightarrow \infty} \mathbb{P}[X=1 \mid Y=y]=1$.
- $\mathbb{P}[X=1 \mid Y=y]$ is (strictly) monotonically increasing.
- $\mathbb{P}[X=1 \mid Y=0]=1 / 2$.

Borel-Cantelli example

Problem 0.3. Suppose we have a sequence of nonnegative random variables X_{n} (not necessarily independent) such that for any constant $c>0$, the following holds:

$$
0<\mathbb{P}\left[X_{n}>c\right] \leq \frac{1}{c^{2}}
$$

We want to show the following two things:

- (a) For any constant $b>0$, there is 0 probability that $\lim _{\sup }^{n \rightarrow \infty}{ }^{X_{n}}{ }_{n}>b$.
- (b) With probability $1, \lim _{n \rightarrow \infty} \frac{X_{n}}{n}=0$.

For part (a), this is all about getting the thing we want to prove into a format where we can hit it with the given inequality. Furthermore, recall that limsup is basically an "infinitely often" thing, which suggests that we might want to apply Borel-Cantelli. This means:

$$
\limsup _{n \rightarrow \infty} \frac{X_{n}}{n}>b \Longleftrightarrow\left\{\frac{X_{n}}{n}>b \text { i.o. }\right\}
$$

(CAUTION! Need to be careful about the inequalities - if it's \geq it becomes more complicated, see Grading Notes 1 and 3.) Furthermore, we can re-write it to make the given inequality applicable. Define:

$$
A_{n}:=\left\{\omega: \frac{X_{n}(\omega)}{n}>b\right\}=\left\{\omega: X_{n}(\omega) \geq b n\right.
$$

Then, applying the inequality, we get

$$
\mathbb{P}\left[A_{n}\right]=\mathbb{P}\left[X_{n}>b n\right] \leq \frac{1}{b^{2} n^{2}}
$$

Therefore, summing up these probabilities gives, for any $b>0$,

$$
\sum_{n} \mathbb{P}\left[A_{n}\right]=\sum_{n} \frac{1}{b^{2} n^{2}}=\frac{\pi^{2}}{9 b^{2}}<\infty
$$

For part (b), there are two options available (both basically the same concept). First, note that because X_{n} is nonnegative, we know that $0 \leq \liminf _{n \rightarrow \infty} X_{n} \leq \limsup _{n \rightarrow \infty} X_{n}$. Therefore, if $\lim \sup _{n \rightarrow \infty} X_{n}=0$, we know that $\lim \sup _{n \rightarrow \infty} X_{n}=0=\liminf _{n \rightarrow \infty} X_{n}$, and therefore $\lim _{n \rightarrow \infty} X_{n}$ exists and is 0 . Thus,

$$
\lim _{n \rightarrow \infty} \frac{X_{n}}{n}=0 \Longleftrightarrow \limsup _{n \rightarrow \infty} \frac{X_{n}}{n}=0
$$

So now we really need to write "lim $\sup _{n \rightarrow \infty} X_{n}=0$ " (as an event) in terms of events we already have - and a countable number of them too. Defining

$$
C:=\left\{\omega: \limsup _{n \rightarrow \infty} \frac{X_{n}(\omega)}{n}=0\right\} \text { and } C_{k}:=\left\{\omega: \limsup _{n \rightarrow \infty} \frac{X_{n}(\omega)}{n} \leq \frac{1}{k}\right\}
$$

We then just see that (by the union bound, and part (a))

$$
\begin{gathered}
C=\bigcap_{k} C_{k} \Longrightarrow C^{c}=\bigcup_{k} C_{k}^{c} \Longrightarrow \mathbb{P}\left[C^{c}\right] \leq \sum_{k} \mathbb{P}\left[C_{k}^{c}\right] \\
=\sum_{k} 0=0 \Longrightarrow \mathbb{P}[C]=1-\mathbb{P}\left[C^{c}\right]=1
\end{gathered}
$$

Alternately, it can be observed that $C_{k} \searrow C$, and $\mathbb{P}\left[C_{k}\right]=1$ for all k; therefore, by continuity of probability we can conclude that $\mathbb{P}[C]=\lim _{k \rightarrow \infty} \mathbb{P}\left[C_{k}\right]=1$.

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

