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The Jacobian Formula: functions are linear if you look really close 

Notational remark: The bolded variables are either matrices or vectors; I like to do that to 
visually remind myself what is what exactly. This will be a little confusing because usually 
bolded uppercase letters are matrices, lower case are vectors, but here I’m also adding random 
vectors as bolded upper-case letters. Also, | · |, when applied to a matrix, is the absolute value 
of the determinant. 

The multivariate derived-distribution problem is set up as follows: X = (X1, . . . , Xn) are jointly 
continuous with density function fX over Rn . We also have a measurable function g : Rn → Rn 

and we define the random variable Y = g(X). Our goal is to find a good means of finding the 
distribution of Y in terms of the distribution of X. 

In particular, we will make an assumption about g which is “well-behaved” in a few ways – and 
allows us to use the Jacobian formula. We will assume the following: 

Assumption 0.1. Let U ⊂ Rn be an open set, and let g : U → Rn be 

• continuously di˙erentiable 

• an injection; and 

• has non-vanishing determinant of the Jacobian, i.e. ∂g 6= 0. ∂x 

We also have the following fact, which is super useful: 

Fact 0.1. Define V as the image g(U). Then if g : U → V satisfies the assumption: (i) V 
−1 is open; (ii) g : V → U is well-defined; (iii) g−1 satisfies the assumption as well. 

Let us define J(y) to be the Jacobian (first-derivative, basically) of g−1 at y. Basically, around 
any point y, we consider a tiny cube A of volume δn and note that the probability mass inside 
came from the parallelepiped B = g−1(A) ≈ J(y)A. The volume of it is then ≈ |J(y)|δn (linear 
algebra fact), and the density inside is approximately fX (g

−1(y)). Thus, the mass (∼ Y ) inside 
A should be equal to the mass (∼ X) in B, giving: 

fy(y) · δn ≈ fX (g −1(y)) · |J(y)|δn 

Dividing both sides by δn and then taking δ & 0 (which turns the ≈ into =), we get the actual 
Jacobian formula: 

fY (y) = fX (g −1(y)) · |J(y)| 

For convenience, we will also be using the matrix M := ∂g (g−1(y)) (forward Jacobian of g ∂x 
measured at x = g−1(y)). We will use the fact that |J(y)| = |M |−1 . 
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An innocent little problem using the Jacobian formula 

Problem 0.1. Let X = (X1, X2) be jointly continuous with PDF fX (x1, x2) = exp(−x1 − 
x2) for x1, x2 > 0, and let 

Y = (Y1, Y2) = (X1 + X2, X1X2) 

We want to know: (a) what is the joint PDF of Y , and (b) are Y1, Y2 independent? 

Well, to (b) we can already answer “no” because if Y2 ≥ 100, then Y1 has to be bigger than 1 
and that basically settles it. 

(Formally, we say P[(Y2 ≥ 100) ∩ (Y1 ≤ 1)] = 0 6= P[Y2 ≥ 100] · P[Y1 ≤ 1]) 

But let’s do this in the principled way. 

First, we have an issue that g is not one-to-one (note that g(x1, x2) = g(x2, x1)); we will solve 
this by means of order statistics. We can assume that x1 6= x2 because {x : x1 = x2} has 
Lebesgue measure 0. Define: 

Z1 = min(X1, X2) and Z2 = max(X1, X2) 

From the order-statistics problem in the homework, we know that the PDF fZ is ( 
2 exp(−z1 − z2) if 0 < z1 < z2 

fZ (z1, z2) = 
0 otherwise 

Note here that our set U ⊂ R2 is now 

U = {z : 0 < z1 < z2} 

which is indeed open, and g remains the same and is therefore still continuously di˙erentiable. 
Finally, if we look at the Jacobian of g, we find that � � 

∂g 1 1 ∂g 
= and so = z2 − z1 

∂z z2 z1 ∂z 

whose determinant is not 0 since z2 6= z1. 

Ok, let’s take a deep breath and remind ourselves of the Jacobian formula: 

fY (y) = fZ (g −1(y)) |J(y)| 

(hidden is a 1V (y) term, i.e. this only works on the range of g). We’ll need to find these two 
parts, fZ (g

−1(y)) and |J(y)|. 

The Density at the Inverse: This luckily turns out to be quite easy, since by definition z1+z2 = y1 

when y = g(z). Therefore, the density can just be computed: 

fZ (g −1(y)) = 2 exp(−y1) 
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−1 The Determinant: For this, we gotta look at g . Given y, what is z? Well, solving gives 

y2 = z1(y1 − z1) = z2(y1 − z2) 

which can be solved quadratically. z2 is the max, so p p 
2 2 y1 − y − 4y2 y1 + y − 4y2 1 1 z1 = and z2 = 

2 2 

2 As a bit of a sanity check, let’s look at y1 − 4y2, and hope that it’s positive. We know 

2 y1 − 4y2 = (x1 + x2)
2 − 4x1x2 ≥ 0 because it’s the square of AM-GM 

So our receiving set V is just 
2 V = {y : y1 − 4y2 ≥ 0} 

Alright, enough putting it o˙: what about the Jacobian J(y) of g−1? To make things super-
simple, however, note that we already have the determinant of the matrix M , which is z1 − z2 

(the absolute value of det(M ) (at z) is z2 − z1); and we know z1 and z2 in terms of y1 and y2. 
Thus, we get p p q 2 2 y1 − y − 4y2 y1 + y − 4y2 1 1 2 det(M) = z1 − z2 = − = y − 4y2 1 2 2 

and therefore 
1 

det(J(y)) = det(M )−1 = −p 
2 y − 4y2 1 

Now, we take the absolute value of this to get what we needed: 

1 |J(y)| = p 
2 y − 4y2 1 

Finally, we can put everything together that we needed – not forgetting the term that we hid 
(indicator of V ) – to get 

2 exp(−y1) 
fY (y) = fZ (g −1(y)) |J(y)| 1V (y) = p 1{y2−4y2>0} 2 1 y − 4y2 1 

As an afterthought, we get part (b) – are they indepedent? – is “no” (as we already knew) 
because this PDF does not factor nicely into a y1 term and a y2 term. 
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Conditional probability example 

Problem 0.2. Alice sends a bit to Bob; this is some X ∈ {−1, 1}, and the probability of 
X = −1 or 1 is 1/2 for each. However, the communication channel is noisy - in particular, 
it introduces some Gaussian noise N ∼ N (0, 1) (which is independent from the transmitted 
bit). Bob then receives Y = X + N , and wants to remove the noise and recover the original 
bit. 

Bob finds that Y = y, for some y ∈ R. Compute the probability P[X = 1 | Y = y]. 

This is a problem about conditioning with probability densities. Let fY |X be the conditional 
density of Y given X, and let fY be the marginal density of Y . In this problem we want something 
of the form P[X|Y ] but are really given things of the form P[Y |X] (and P[X]) – so a natural 
approach is to use Bayes’ formula. 

Defining pX to be the probability mass function of X, we get 

pX (1) · fY |X (y | 1) 
P[X = 1 | Y = y] = 

fY (y) 

Note that because the noise is N (0, 1) (and independent of X), note that Y ∼ N (X, 1) for 
whatever X is. Therefore, the density 

1 − (y−x)2 

fY |X (y | x) = √ e 2 

2π 

Furthermore, fY is built as an average of these (recalling that X can only take two values): 

(y+1)2 (y−1)2 
− − (y+1)2 (y−1)2 X √1 e 2 + √1 e 2 − − 1 e 2 + e 2 2π 2π fY (y) = pX (x) · fY |X (y | x) = = √ 

2 2π 2 
x 

because pX (x) = 1/2 for x = −1, 1. Plugging in all of these into the formula above yields (after √ 
a bunch of cancellations with the 1/2 and the 1/ 2π): 

(y−1)2 
− y pX (1) · fY |X (y | 1) e 2 e 

P[X = 1 | Y = y] = = = 
(y+1)2 −y + ey fY (y) − − (y−1)2 e e 2 + e 2 

2+1 
(the last step is just an algebraic simplification, cancelling out the e − y 

2 on the top and bottom). 

Notably, this function has the following natural properties for this problem (sanity check): 

• limy→−∞ P[X = 1 | Y = y] = 0 and limy→∞ P[X = 1 | Y = y] = 1. 

• P[X = 1 | Y = y] is (strictly) monotonically increasing. 

• P[X = 1 | Y = 0] = 1/2. 
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Borel-Cantelli example 

Problem 0.3. Suppose we have a sequence of nonnegative random variables Xn (not neces-
sarily independent) such that for any constant c > 0, the following holds: 

1 
0 < P[Xn > c] ≤ 

2c 

We want to show the following two things: 

Xn • (a) For any constant b > 0, there is 0 probability that lim sup > b. n→∞ n 

• (b) With probability 1, limn→∞ 
Xn = 0. n 

For part (a), this is all about getting the thing we want to prove into a format where we can 
hit it with the given inequality. Furthermore, recall that lim sup is basically an “infinitely often” 
thing, which suggests that we might want to apply Borel-Cantelli. This means: o Xn 

nXn 
lim sup > b ⇐⇒ > b i.o. 
n→∞ n n 

(CAUTION! Need to be careful about the inequalities - if it’s ≥ it becomes more complicated, see 
Grading Notes 1 and 3.) Furthermore, we can re-write it to make the given inequality applicable. 
Define: n Xn(ω) 

o � 
An := ω : > b = ω : Xn(ω) ≥ bn 

n 
Then, applying the inequality, we get 

1 
P[An] = P[Xn > bn] ≤ 

b2n2 

Therefore, summing up these probabilities gives, for any b > 0, X X 1 π2 

P[An] = = < ∞ 
b2n2 9b2 

n n 

Xn Therefore, we can apply Borel-Cantelli to conclude that lim sup > b has probability 0. n→∞ n 

For part (b), there are two options available (both basically the same concept). First, note that 
because Xn is nonnegative, we know that 0 ≤ lim infn→∞ Xn ≤ lim supn→∞ Xn. Therefore, 
if lim supn→∞ Xn = 0, we know that lim supn→∞ Xn = 0 = lim infn→∞ Xn, and therefore 
limn→∞ Xn exists and is 0. Thus, 

Xn Xn 
lim = 0 ⇐⇒ lim sup = 0 
n→∞ n n→∞ n 

So now we really need to write “lim supn→∞ Xn = 0” (as an event) in terms of events we already 
have - and a countable number of them too. Defining n o n o Xn(ω) Xn(ω) 1 

C := ω : lim sup = 0 and Ck := ω : lim sup ≤ 
n→∞ n n→∞ n k 
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We then just see that (by the union bound, and part (a)) \ [ X 
C = Ck =⇒ Cc = Cc =⇒ P[Cc] ≤ P[Cc 

k k] 
k k k X 
= 0 = 0 =⇒ P[C] = 1 − P[Cc] = 1 

k 

Alternately, it can be observed that Ck & C, and P[Ck] = 1 for all k; therefore, by continuity of 
probability we can conclude that P[C] = limk→∞ P[Ck] = 1. 
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