Fall 2018

PRODUCT MEASURE AND FUBINI'S THEOREM

Contents

- 1. Product measure
- 2. Fubini's theorem

In elementary math and calculus, we often interchange the order of summation and integration. The discussion here is concerned with conditions under which this is legitimate.

1 PRODUCT MEASURE

Consider two probabilistic experiments with probability spaces $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ and $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$, respectively. We are interested in forming a probabilistic model of a "joint experiment" in which the original two experiments are carried out independently.

1.1 The sample space of the joint experiment

If the first experiment has an outcome ω_1 , and the second has an outcome ω_2 , then the outcome of the joint experiment is the pair (ω_1, ω_2) . This leads us to define a new sample space $\Omega = \Omega_1 \times \Omega_2$.

1.2 The σ -algebra of the joint experiment

Next, we need a σ -algebra on Ω . If $A_1 \in \mathcal{F}_1$, we certainly want to be able to talk about the event $\{\omega_1 \in A_1\}$ and its probability. In terms of the joint experiment, this would be the same as the event

$$A_1 \times \Omega_1 = \{ (\omega_1, \omega_2) \mid \omega_1 \in A_1, \ \omega_2 \in \Omega_2 \}.$$

Thus, we would like our σ -algebra on Ω to include all sets of the form $A_1 \times \Omega_2$, (with $A_1 \in \mathcal{F}_1$) and by symmetry, all sets of the form $\Omega_1 \times A_2$ (with $(A_2 \in \mathcal{F}_2)$). This leads us to the following definition.

Definition 1. We define $\mathcal{F}_1 \times \mathcal{F}_2$ as the smallest σ -algebra of subsets of $\Omega_1 \times \Omega_2$ that contains all sets of the form $A_1 \times \Omega_2$ and $\Omega_1 \times A_2$, where $A_1 \in \mathcal{F}_1$ and $A_2 \in \mathcal{F}_2$.

Note that the notation $\mathcal{F}_1 \times \mathcal{F}_2$ is misleading: this is not the Cartesian product of \mathcal{F}_1 and \mathcal{F}_2 !

Since σ -fields are closed under intersection, we observe that if $A_i \in \mathcal{F}_i$, then $A_1 \times A_2 = (A_1 \times \Omega_2) \cap (\Omega_1 \cap A_2) \in \mathcal{F}_1 \times \mathcal{F}_2$. It turns out (and is not hard to show) that $\mathcal{F}_1 \times \mathcal{F}_2$ can also be defined as the smallest σ -algebra containing all sets of the form $A_1 \times A_2$, where $A_i \in \mathcal{F}_i$. Alternatively, suppose \mathcal{F}_1 and \mathcal{F}_2 are generated by algebras $\mathcal{F}_{0,1}, \mathcal{F}_{0,2}$. That is $\mathcal{F}_i = \sigma(\mathcal{F}_{0,i}), i = 1, 2$. Then $\mathcal{F}_1 \times \mathcal{F}_2$ is also the smallest σ -algebra containing all sets of the form $A_1 \times A_2$, where $A_i \in \mathcal{F}_0$, i = 1, 2. Then $\mathcal{F}_1 \times \mathcal{F}_2$ is also the smallest σ -algebra containing all sets of the form $A_1 \times A_2$, where $A_i \in \mathcal{F}_0$, i = 1, 2.

In the sequel, we will talk about $g: \Omega_1 \times \Omega_2 \to \mathbb{R}$ – measurable functions with respect to $\mathcal{F}_1 \times \mathcal{F}_2$. Recall, this means that for any Borel set $B \subset \mathbb{R}$, the set $\{(\omega_1, \omega_2) \mid g(\omega_1, \omega_2) \in B\}$ belongs to the σ -algebra $\mathcal{F}_1 \times \mathcal{F}_2$. As a practical matter, it is enough to verify that for any scalar c, the set $\{(\omega_1, \omega_2) \mid g(\omega_1, \omega_2) \leq c\}$ is measurable. Other than using this definition directly, how else can we verify that such a function g is measurable? The basic tools at hand are the following:

- (a) continuous functions from \mathbb{R}^2 to \mathbb{R} are measurable;
- (b) indicator functions of measurable sets are measurable;
- (c) combining measurable functions in the usual ways (e.g., adding them, multiplying them, taking limits, etc.) results in measurable functions.

The following proposition gives further information about $\mathcal{F}_1 \times \mathcal{F}_2$ and functions measurable with respect to it.

Proposition 1. Let $E \in \mathcal{F}_1 \times \mathcal{F}_2$ then for every $\omega_1 \in \Omega_1$ the set

$$E_{\omega_1} \triangleq \{\omega_2 \mid (\omega_1, \omega_2) \in E\}$$

belongs to \mathcal{F}_2 . Consequently, for every $\mathcal{F}_1 \times \mathcal{F}_2$ -measurable function f and every ω_1 the function

$$f_{\omega_1}(\omega_2) \triangleq f(\omega_1, \omega_2)$$

is \mathcal{F}_2 -measurable.

Remark: E_{ω_1} and f_{ω_1} are called slice of E and f at ω_1 , respectively.

Proof. Fix some ω_1 and define a collection of sets

$$\mathcal{L} = \{ E \in \mathcal{F}_1 \times \mathcal{F}_2 \mid E_{\omega_1} \in \mathcal{F}_2 \}$$

When $E = A_1 \times A_2$ the set E_{ω_1} is either empty or equal to A_2 . Thus \mathcal{L} contains all the rectangles. On the other hand, for any sequence E_j we have

$$\left(\cup_{j} E_{j}\right)_{\omega_{1}} = \bigcup_{j} \left(E_{j}\right)_{\omega_{1}}$$

and

$$(E^c)_{\omega_1} = (E_{\omega_1})^c.$$

Thus \mathcal{L} is closed under countable unions and complements. Hence \mathcal{L} is a σ -algebra, which by minimality of $\mathcal{F}_1 \times \mathcal{F}_2$ must be equal to the latter. This shows these statement for sets.

Next, a slice of a simple function

$$f = \sum_{i=1}^{N} a_i \mathbf{1}_{E_i}$$

at ω_1 is itself a simple (hence measurable) function on $(\Omega_2, \mathcal{F}_2)$. This follows from what was just shown for slices of sets. For the general f we have $f = \lim_{r \to \infty} f_r$, where f_r are simple functions. Since the slice of each f_r is \mathcal{F}_2 measurable and the class of \mathcal{F}_2 -measurable functions is closed under taking limits the result follows.

1.3 The product measure

We now define a measure, to be denoted by $\mathbb{P}_1 \times \mathbb{P}_2$ (or just \mathbb{P} , for short) on the measurable space $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$. To capture the notion of independence, we require that

$$\mathbb{P}(A_1 \times A_2) = \mathbb{P}_1(A_1)\mathbb{P}_2(A_2), \qquad \forall A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2.$$
(1)

Theorem 1. There exists a unique measure \mathbb{P} on $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$ that has property (1). Furthermore, for every $E \in \mathcal{F}_1 \times F_2$ measure $\mathbb{P}(E)$ satisfies

$$\mathbb{P}(E) = \int \mathbb{P}_2(E_{\omega_1}) \mathbb{P}_1(d\omega_1)$$
(2)

$$= \int \mathbb{P}_1(E_{\omega_2}) \mathbb{P}_2(d\omega_2).$$
(3)

Proof. Uniqueness follows from the fact that $A_1 \times A_2$ is a generating *p*-system for $\mathcal{F}_1 \times \mathcal{F}_2$ (see Proposition 1 in Lecture 2). We only need to show existence. We start by showing that for every $E \in \mathcal{F}_1 \times \mathcal{F}_2$ the function

$$f_E(\omega_1) \triangleq \mathbb{P}_2(E_{\omega_1})$$

is \mathcal{F}_1 -measurable. Note that $\mathbb{P}_2(E_{\omega_1})$ is well-defined by Proposition 1. Define a collection

 $\mathcal{L} = \{ E : f_E \text{ is } \mathcal{F}_1 \text{-measurable} \}.$

When $E = A_1 \times A_2$ the function $f_E(\omega_1) = \mathbb{P}_2(A_2) \mathbb{1}_{A_1}(\omega_1)$, which is clearly measurable. Thus \mathcal{L} contains all rectangles. Next, if E and F are disjoint then so are E_{ω_1} and F_{ω_1} . Consequently,

$$f_{E\cup F}(\omega_1) = f_E(\omega_1) + f_F(\omega_2) \qquad \text{if } E \cap F = \emptyset \,. \tag{4}$$

This implies that \mathcal{L} contains all finite unions of disjoint rectangles. The latter is an algebra of sets (since $(A_1 \times A_2)^c$ can be written as disjoint union of 3 rectangles). Finally, if $E_j \nearrow E$ and $E_j \in \mathcal{L}$ then

$$f_{E_i} \nearrow f_E$$
 (5)

and therefore f_E is \mathcal{F}_1 -measurable. Same argument applies to $E_j \searrow E$. All in all \mathcal{L} is a monotone class, containing an algebra that generates $\mathcal{F}_1 \times \mathcal{F}_2$. So $\mathcal{L} = \mathcal{F}_1 \times \mathcal{F}_2$.

We now *define* for any $E \in \mathcal{F}_1 \times \mathcal{F}_2$

$$\mathbb{P}(E) \triangleq \int f_E(\omega_1) \mathbb{P}_1(d\omega_1) \,. \tag{6}$$

It is evident that this assignment satisfies (1). Finite additivity of \mathbb{P} follows from (4). It remains to show σ -additivity, which in turn is equivalent to continuity. The latter follows from (5) and the MCT.

Thus, existence of \mathbb{P} is established. Furthermore, definition (6) is just a restatement of (2). Regarding (3), construct another measure \mathbb{P}' by exchanging roles of $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ and $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ in (6). So constructed \mathbb{P}' automatically satisfies (3). Moreover, \mathbb{P}' also verifies (1) and hence coincides with \mathbb{P} on a *p*-system of rectangles $A \times B$. By Proposition 1 of Lecture 2 we have: $\mathbb{P}' = \mathbb{P}$.

The above discussion extends to the case of any finite number of probability spaces $(\Omega_i, \mathcal{F}_i, \mathbb{P}_i), i = 1, 2, ..., k$. In particular there exists a unique measure \mathbb{P} on $\Omega = \Omega_1 \times \cdots \times K_k$ such that for every collection of sets $A_i \in \mathcal{F}_i$,

$$\mathbb{P}(A_1 \times \cdots \times A_k) = \mathbb{P}(A_1) \times \cdots \times \mathbb{P}(A_k).$$

The corresponding σ -algebra on Ω is the smallest σ -algebra containing all sets of the form $A_1 \times \cdots \times A_k$ where $A_i \in \mathcal{F}_i$. Moreover, this extends to a countable collections of probability spaces $(\Omega_i, \mathcal{F}_i, \mathbb{P}_i), i = 1, 2, ...$, but now the measure is only defined when a finite collection of the $\{A_i\}$ are not Ω_k , i.e. i = 1, 2, ..., k

$$\mathbb{P}(A_1 \times \cdots \times A_k \times A_{k+1} \times A_{k+2} \times \cdots) = \mathbb{P}(A_1) \times \cdots \times \mathbb{P}(A_k).$$

1.4 Beyond probability measures

Everything in these notes extends to the case where instead of probability measures \mathbb{P}_i , we are dealing with general measures μ_i , under the assumptions that the measures μ_i are σ -finite. (A measure μ is called σ -finite if the set Ω can be partitioned into a countable union of sets, each of which has finite measure.)

The most relevant example of a σ -finite measure is the Lebesgue measure on the real line. Indeed, the real line can be broken into a countable sequence of intervals (n, n + 1], each of which has finite Lebesgue measure.

1.5 The product measure on \mathbb{R}^2

The two-dimensional plane \mathbb{R}^2 is the Cartesian product of \mathbb{R} with itself. We endow each copy of \mathbb{R} with the Borel σ -field \mathcal{B} and one-dimensional Lebesgue measure. The resulting σ -field $\mathcal{B} \times \mathcal{B}$ is called the Borel σ -field on \mathbb{R}^2 . The resulting product measure on \mathbb{R}^2 is called two-dimensional Lebesgue measure, to be denoted here by λ_2 . The measure λ_2 corresponds to the natural notion of area. For example,

$$\lambda_2([a,b] \times [c,d]) = \lambda([a,b]) \cdot \lambda([c,d]) = (b-a) \cdot (d-c).$$

More generally, for any "nice" set of the form encountered in calculus, e.g., sets of the form $A = \{(x, y) \mid f(x, y) \leq c\}$, where f is a continuous function, $\lambda_2(A)$ coincides with the usual notion of the area of A.

Remark for those of you who know a little bit of topology – otherwise ignore *it.* We could define the Borel σ -field on \mathbb{R}^2 as the σ -field generated by the collection of open subsets of \mathbb{R}^2 . (This is the standard way of defining Borel sets in topological spaces.) It turns out that this definition results in the same σ -field as the method of Section 1.2.

FUBINI'S THEOREM 2

Fubini's theorem is a powerful tool that provides conditions for interchanging the order of integration in a double integral. Given that sums are essentially special cases of integrals (with respect to discrete measures), it also gives conditions for interchanging the order of summations, or the order of a summation and an integration. In this respect, it subsumes results such as Corollary 1 at the end of the notes for Lecture 12.

Fubini's theorem holds under two different sets of conditions: (a) nonnegative functions g (compare with the MCT); (b) functions g whose absolute value has a finite integral (compare with the DCT). We state the two versions separately, because of some subtle differences.

The two statements below are taken verbatim from the text by Adams & Guillemin, with minor changes to conform to our notation.

Theorem 2. Let $g : \Omega_1 \times \Omega_2 \to \mathbb{R}$ be a nonnegative measurable function. **Theorem 2.** Let $g : (\Omega_1 \times \Omega_2 \to \mathbb{R})$ be a nonnegative Let $\mathbb{P} = \mathbb{P}_1 \times \mathbb{P}_2$ be a product measure. Then, (a) $\int_{\Omega_2} g(\omega_1, \omega_2) d\mathbb{P}_2$ is a measurable function of ω_1 . (b) $\int_{\Omega_1} g(\omega_1, \omega_2) d\mathbb{P}_1$ is a measurable function of ω_2 . (c) We have

$$\int_{\Omega_1} \left[\int_{\Omega_2} g(\omega_1, \omega_2) \, d\mathbb{P}_2 \right] d\mathbb{P}_1 = \int_{\Omega_2} \left[\int_{\Omega_1} g(\omega_1, \omega_2) \, d\mathbb{P}_1 \right] d\mathbb{P}_2$$
$$= \int_{\Omega_1 \times \Omega_2} g(\omega_1, \omega_2) \, d\mathbb{P}.$$

Note that some of the integrals above may be infinite, but this is not a problem; since everything is nonnegative, expressions of the form $\infty - \infty$ do not arise.

Proof. For simple functions $g = \sum_{i=1}^n a_i 1_{E_i}, E_i \in \mathcal{F}_1 \times \mathcal{F}_2$ statement

(a) follows from measurability of $\omega_1 \mapsto \mathbb{P}_2(E_{\omega_1})$ established in the proof of Theorem 1. For a general g consider a sequence of simple functions

$$g_r(\omega_1,\omega_2) \nearrow g(\omega_1,\omega_2) \qquad \forall \omega_1,\omega_2$$

as $r \to \infty$. Then we have shown that

$$f_r(\omega_1) = \int_{-2}^{-2} g_r(\omega_1, \omega_2) \, d\mathbb{P}_2$$

are \mathcal{F}_1 measurable and monotonically increasing $f_r \nearrow f$. By the MCT

$$f(\omega_1) \triangleq \lim_{r \to \infty} \int_{-2} g_r(\omega_1, \omega_2) \, d\mathbb{P}_2 \tag{7}$$

$$= \int_{\mathbb{R}^{2}} \lim_{r \to \infty} g_r(\omega_1, \omega_2) \, d\mathbb{P}_2 \tag{8}$$

$$= \int_{2}^{2} g(\omega_1, \omega_2) d\mathbb{P}_2.$$
(9)

Since f is a limit of measurable f_r 's – f must be measurable. By (9) the integral over $_2$ is also \mathcal{F}_1 measurable. This establishes (a) and (b) by symmetry. Finally (c), for a simple function g is just (2)-(3), while for a general function g we just need to integrate (7) interchanging \int and lim by the MCT at will.

Recall now that a function is said to be **integrable** if it is measurable and the integral of its absolute value is finite.

Theorem 3. Let $g: \Omega_1 \times \Omega_2 \to \mathbb{R}$ be a measurable function such that

$$\int_{\Omega_1 \times \Omega_2} |g(\omega_1, \omega_2)| \, d\mathbb{P} < \infty, \tag{10}$$

- where $\mathbb{P} = \mathbb{P}_1 \times \mathbb{P}_2$. (a) For almost all $\omega_1 \in \Omega_1$, $g(\omega_1, \omega_2)$ is an integrable function of ω_2 .
- (b) For almost all $\omega_2 \in \Omega_2$, $g(\omega_1, \omega_2)$ is an integrable function of ω_1 .
- (c) There exists an integrable function $h: \Omega_1 \to \mathbb{R}$ such that $\int_{\Omega_2} g(\omega_1, \omega_2) d\mathbb{P}_2 =$ $h(\omega_1)$, a.s. (i.e., except for a set of ω_1 of zero \mathbb{P}_1 -measure for which $\int_{\Omega_2} g(\omega_1, \omega_2) d\mathbb{P}_2$ is undefined or infinite).
- (d) There exists an integrable function $h: \Omega_2 \to \mathbb{R}$ such that $\int_{\Omega_1} g(\omega_1, \omega_2) d\mathbb{P}_1 =$ $h(\omega_2)$, a.s. (i.e., except for a set of ω_2 of zero \mathbb{P}_2 -measure for which $\int_{\Omega_1} g(\omega_1, \omega_2) d\mathbb{P}_1$ is undefined or infinite).
- (e) We have

$$\begin{split} \int_{\Omega_1} \left[\int_{\Omega_2} g(\omega_1, \omega_2) \, d\mathbb{P}_2 \right] d\mathbb{P}_1 &= \int_{\Omega_2} \left[\int_{\Omega_1} g(\omega_1, \omega_2) \, d\mathbb{P}_1 \right] d\mathbb{P}_2 \\ &= \int_{\Omega_1 \times \Omega_2} g(\omega_1, \omega_2) \, d\mathbb{P}. \end{split}$$

Remarks:

1. Both Theorems remain valid when dealing with σ -finite measures, such as the Lebesgue measure on \mathbb{R}^2 . This provides us with conditions for the familiar calculus formula

$$\int \int g(x,y) \, dx \, dy = \int \int g(x,y) \, dy \, dx$$

2. In order to apply Theorem 3, we need a practical method for checking the integrability condition (10). Here, Theorem 2 comes to the rescue. Indeed, by Theorem 2, we have

$$\int_{\Omega_1 \times \Omega_2} |g(\omega_1, \omega_2)| \, d\mathbb{P} = \int_{\Omega_1} \int_{\Omega_2} |g(\omega_1, \omega_2)| \, d\mathbb{P}_2 \, d\mathbb{P}_1,$$

so all we need is to work with the right hand side, and integrate one variable at a time, possibly also using some bounds on the way.

Proof. By now converting from a non-negative case to integrable case should be familiar. Theorem 3 is no exception: Given a function g, decompose it into its positive and negative parts, apply Theorem 2 to each part, and in the process make sure that you do not encounter expressions of the form $\infty - \infty$. We omit the details.

3 SOME CAUTIONARY EXAMPLES

We give a few examples where Fubini's theorem does not apply.

3.1 Nonnegativity and integrability

Suppose that both of our sample spaces are the nonnegative integers: $\Omega_1 = \Omega_2 = \{1, 2, \ldots\}$. The σ -fields \mathcal{F}_1 and \mathcal{F}_2 consist of all subsets of Ω_1 and Ω_2 , respectively. Then, $\sigma(F_1 \times F_2)$ is composed of all subsets of $\{1, 2, \ldots\}^2$. Let both \mathbb{P}_1 and \mathbb{P}_2 be the counting measure, i.e. $\mathbb{P}(A) = |A|$. This means that

$$\int_{A} g \, d\mathbb{P}_1 = \sum_{a \in A} f(a), \qquad \int_{B} h \, d\mathbb{P}_2 = \sum_{b \in B} h(b),$$

and

$$\int_C f d(\mathbb{P}_1 \times \mathbb{P}_2) = \sum_{c \in C} f(c).$$

Consider the function f defined by f(m,m) = 1, f(m,m+1) = -1, and f = 0 elsewhere. It is easier to visualize f with a picture:

1	-1	0	0	• • •
0	1	-1	0	• • •
0	0	1	-1	
0	0	0	1	• • •
÷	:	÷	÷	:
•	•	•	•	•

So,

c

$$\int_{\Omega_1} \int_{\Omega_2} f \, d\mathbb{P}_2 \, d\mathbb{P}_1 = \sum_n \sum_m f(n,m) = 0$$

$$\neq 1 = \sum_m \sum_n f(n,m) = \int_{\Omega_2} \int_{\Omega_1} f \, d\mathbb{P}_1 \, d\mathbb{P}_2.$$

In this example, the conditions of Fubini's theorem fail to hold: the function f is neither nonnegative nor integrable.

3.2 σ -finiteness

Let $\Omega_1 = (0, 1)$, let \mathcal{F}_1 be the Borel sets, and let \mathbb{P}_1 be the Lebesgue measure. Let $\Omega_2 = (0, 1)$ let \mathcal{F}_2 be the set of all subsets of (0, 1), and let \mathbb{P}_2 be the counting measure. In particular, for every infinite (countable or uncountable) subset of (0, 1), $\mathbb{P}_2(A) = \infty$.

Let f(x, y) = 1 if x = y, and f(x, y) = 0 otherwise. Then,

$$\int_{\Omega_1} \int_{\Omega_2} f(x,y) \, d\mathbb{P}_2(y) \, d\mathbb{P}_1(x) = \int_{\Omega_1} 1 \, d\mathbb{P}_1(y) = 1,$$

but

$$\int_{\Omega_2} \int_{\Omega_1} f(x, y) \, d\mathbb{P}_1(x) \, d\mathbb{P}_2(y) = \int_{\Omega_2} 0 \, d\mathbb{P}_2(y) = 0.$$

In this example, the conditions of Fubini's theorem fail to hold: the measure on (0,1) is not σ -finite.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>