MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Readings:

(a) Notes from Lectures 7-9.
(b) [Cinlar] Sections I.4-I. 6

Exercise 1. The worker's union requests that all workers at a factory be given the day off if at least one worker has a birthday on that day. Otherwise workers agree to work 365 days a year. Management is to maximize the number of expected man-days worked per year. How many workers should they hire?
(Workers' birthdays are uniformly and independently distributed over the 365 days of the year.)

Exercise 2. Let $\Omega=\mathbb{Z}_{+}, \mathcal{F}=2^{\Omega}$. Complete construction of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and come up with a sequence of random variables X_{n} which is increasing a.e., but $\mathbb{E}\left[X_{n}\right]$ does not converge to $\mathbb{E}[X]$, where $X=\lim _{n} X_{n}$ a.e.

Exercise 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X \geq 0$ a random variable. Show

$$
\mathbb{E}[X]=\int_{0}^{\infty}\left(1-F_{X}(x)\right) d x
$$

where $F_{X}(x)=\mathbb{P}[X \leq x]$ is a CDF of X. (Hint: Fubini.)
Exercise 4. Show that for integrable f

$$
\left|\int f d \mu\right| \leq \int|f| d \mu
$$

Exercise 5 (Weird integrable functions). Let $\psi(x)=\frac{1}{\sqrt{x}} \mathbb{1}_{(0,1)}(x)$ and

$$
F(x)=\sum_{n=1}^{\infty} 2^{-n} \psi\left(x-r_{n}\right),
$$

where $\left\{r_{n}\right\}$ is some enumeration of all rationals in $(0,1)$. Show that $F(x)$ is a measurable non-negative function with

$$
\int_{[0,1]} F d \lambda<\infty .
$$

In particular, $F(x)$ is finite almost everywhere on $[0,1]$, yet unbounded on every interval.

Exercise 6. For all n, let g_{n} and g be measurable functions. Suppose that $g_{n} \uparrow g$ and that $\int g_{1-} d \mu<\infty\left(\right.$ where $g_{1-}=\max \left(-g_{1}, 0\right)$). Prove that $\int g_{n} d \mu \uparrow$ $\int g d \mu$.

Exercise 7. (Differentiating under the integral sign)

Let $g: \mathbb{R}^{2} \mapsto \mathbb{R}$ be a continuous function of two variables s and x. Furthermore, assume that the derivative $g^{\prime}(s, x)=(\partial g / \partial s)$ exists for every s and x, is jointly measurable in (s, x) and is a continuous function of s for any fixed x. Assume $\left|g^{\prime}(s, x)\right| \leq c$ for all s, x.

Let X be a random variable. Show that

$$
\frac{\partial}{\partial s} \mathbb{E}[g(s, X)]=\mathbb{E}\left[\frac{\partial g}{\partial s}(s, X)\right] .
$$

Note: You can use the fact from elementary calculus that under our assumptions, $g(s, x)=g(0, x)+\int_{0}^{s} \frac{\partial g}{\partial s}(u, x) d u$ for all x.

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

