6.436J/15.085J	Fall 2018
Problem Set 5	

Readings:

(a) Notes from Lectures 7-9.(b) [Cinlar] Sections I.4-I.6

Exercise 1. The worker's union requests that all workers at a factory be given the day off if at least one worker has a birthday on that day. Otherwise workers agree to work 365 days a year. Management is to maximize the number of expected man-days worked per year. How many workers should they hire?

(Workers' birthdays are uniformly and independently distributed over the 365 days of the year.)

Exercise 2. Let $\Omega = \mathbb{Z}_+$, $\mathcal{F} = 2^{\Omega}$. Complete construction of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and come up with a sequence of random variables X_n which is increasing a.e., but $\mathbb{E}[X_n]$ does not converge to $\mathbb{E}[X]$, where $X = \lim_n X_n$ a.e.

Exercise 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X \ge 0$ a random variable. Show

$$\mathbb{E}[X] = \int_0^\infty (1 - F_X(x)) dx \,,$$

where $F_X(x) = \mathbb{P}[X \le x]$ is a CDF of X. (*Hint:* Fubini.)

Exercise 4. Show that for integrable f

$$\left|\int f d\mu\right| \leq \int |f| d\mu.$$

Exercise 5 (Weird integrable functions). Let $\psi(x) = \frac{1}{\sqrt{x}} \mathbbm{1}_{(0,1)}(x)$ and

$$F(x) = \sum_{n=1}^{\infty} 2^{-n} \psi(x - r_n),$$

where $\{r_n\}$ is some enumeration of all rationals in (0, 1). Show that F(x) is a measurable non-negative function with

$$\int_{[0,1]} F d\lambda < \infty \, .$$

In particular, F(x) is finite almost everywhere on [0, 1], yet unbounded on every interval.

Exercise 6. For all n, let g_n and g be measurable functions. Suppose that $g_n \uparrow g$ and that $\int g_{1-} d\mu < \infty$ (where $g_{1-} = \max(-g_1, 0)$). Prove that $\int g_n d\mu \uparrow \int g d\mu$.

Exercise 7. (Differentiating under the integral sign)

Let $g : \mathbb{R}^2 \to \mathbb{R}$ be a continuous function of two variables s and x. Furthermore, assume that the derivative $g'(s, x) = (\partial g/\partial s)$ exists for every s and x, is jointly measurable in (s, x) and is a continuous function of s for any fixed x. Assume $|g'(s, x)| \le c$ for all s, x.

Let X be a random variable. Show that

$$\frac{\partial}{\partial s} \mathbb{E}[g(s,X)] = \mathbb{E}\left[\frac{\partial g}{\partial s}(s,X)\right].$$

Note: You can use the fact from elementary calculus that under our assumptions, $g(s,x) = g(0,x) + \int_0^s \frac{\partial g}{\partial s}(u,x) du$ for all x.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>