MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J	Fall 2018
Problem Set 9	

Readings:

Notes from Lectures 16-19. [GS], Section 7.1-7.6 [Cinlar], Chapter III

Exercise 1. We study convergence of algebraic operations:

(a) Show that

$$X_n \stackrel{\text{i.p.}}{\to} X, Y_n \stackrel{\text{i.p.}}{\to} Y \quad \Rightarrow \quad X_n Y_n \stackrel{\text{i.p.}}{\to} XY$$

(*Hint*: reduce to $\stackrel{\text{a.s.}}{\rightarrow}$.)

(b) Show, however, that

$$X_n \xrightarrow{\mathrm{d}} X, Y_n \xrightarrow{\mathrm{d}} Y \quad \not\Rightarrow \quad X_n Y_n \xrightarrow{\mathrm{d}} XY$$

(c) Assume $X_n \perp \!\!\!\perp Y_n$ and $X \perp \!\!\!\perp Y$. Show that then

$$X_n \xrightarrow{\mathrm{d}} X, Y_n \xrightarrow{\mathrm{d}} Y \quad \Rightarrow \quad X_n Y_n \xrightarrow{\mathrm{d}} XY$$

(*Hint:* reduce to $\stackrel{\text{a.s.}}{\rightarrow}$.)

Exercise 2 (Metrization of convergence in probability). Define a pseudo-metric on the space of random-variables:

$$d(X,Y) \triangleq \mathbb{E}\left[\frac{|X-Y|}{1+|X-Y|}\right].$$

Show $X_n \stackrel{\text{i.p.}}{\to} X$ iff $d(X_n, X) \to 0$.

Exercise 3 (20 pts). Prove Cauchy criterions for convergence a.s. and i.P.:

(i) Show that X_n converges almost surely iff

$$\forall \epsilon > 0 \quad \mathbb{P}[\sup_{k \ge 0} |X_{n+k} - X_n| > \epsilon] \to 0 \quad n \to \infty$$

(ii) Show that X_n converges in probability iff

$$\forall \epsilon > 0 \quad \sup_{k \ge 0} \mathbb{P}[|X_{n+k} - X_n| > \epsilon] \to 0 \quad n \to \infty$$

Exercise 4. Let $\{X_n\}$ be a sequence of random variables defined on the same probability space.

- (a) Show $\mathbb{E}[|X_n X|] \to 0$ implies $X_n \stackrel{\text{i.p.}}{\to} X$.
- (b) Suppose that $X_n \stackrel{\text{i.p.}}{\to} 0$ and that for some constant c, we have $|X_n| \leq c$, for all n, with probability 1. Show that

$$\lim_{n \to \infty} \mathbb{E}[|X_n|] = 0.$$

- (c) Suppose that each X_n can only take the values 0 and 1 and, that $\mathbb{P}(X_n = 1) = 1/n$.
 - (i) Give an example in which we have almost sure convergence of X_n to 0.
 - (ii) Give an example in which we **do not have** almost sure convergence of X_n to 0.

Exercise 5. Let X_1, X_2, \ldots be i.i.d. exponential random variables with parameter $\lambda = 1$. Let $S_n = X_1 + \cdots + X_n$. Let a > 1. What is the Chernoff upper bound for $\mathbb{P}(S_n \ge na)$?

Exercise 6. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables, uniformly distributed on the interval [0, 1]. For *n* odd, let M_n be the median of X_1, X_2, \ldots, X_n , i.e. the $(\frac{n+1}{2})$ order statistic $X^{(\frac{n+1}{2})}$. Show that M_n converges to 1/2, in probability.

Exercise 7. [Optional, not to be graded] Show that for every \mathbb{P}_X on $(\mathbb{R}, \mathcal{B})$ there exist a sequence $\mathbb{P}_{X_n} \xrightarrow{d} \mathbb{P}_X$ such that every \mathbb{P}_{X_n} has a continuous, bounded, infinitely-differentiable PDF. Steps:

(i) Show $X_{\epsilon} = X + \epsilon Z \xrightarrow{d} X$ as $\epsilon \to 0$.

(ii) Let $X \perp Z$ and $Z \sim \mathcal{N}(0, 1)$. Show that CDF of X_{ϵ} is continuous (*Hint:* BCT) and differentiable (*Hint: Fubini*) with derivative

$$f_{X_{\epsilon}}(a) = \mathbb{E}\left[f_Z\left(\frac{a-X}{\epsilon}\right)\frac{1}{\epsilon}\right].$$

- (iii) Show that $a \mapsto f_{X_{\epsilon}}(a)$ is continuous.
- (iv) [Optional] Conclude the proof (*Hint*: derivatives of f_Z are uniformly bounded on \mathbb{R}).

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>