MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Readings:

Notes from Lecture 2 and 3.

Supplementary readings:

[GS], Sections 1.4-1.7.
[C], Chapter 1.3
[W], Chapter 1.
Exercise 1. Consider a probabilistic experiment involving infinitely many coin tosses, and let $\Omega=\{0,1\}^{\infty}$ (think of 0 and 1 corresponding to heads and tails, respectively). A typical element $\omega \in \Omega$ is of the form $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$, with $\omega_{i} \in\{0,1\}$.

As in the notes for Lecture 2, we define \mathcal{F}_{n} as the σ-field consisting of all sets whose occurrence or nonoccurrence can be determined by looking at the result of the first n coin flips. The σ-field \mathcal{F} for this model is defined as the smallest σ-field that contains all of the \mathcal{F}_{n}.
(a) Consider the event H consisting of all ω with the following property. There exists some time t at which the number of ones so far is greater than or equal to the number of zeros so far. Show that $H \in \mathcal{F}$.
(b) (Harder) Consider the set A of all ω for which the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \omega_{i}
$$

exists. Show that $A \in \mathcal{F}$.
Note: This is important because, once we have also chosen a probability measure, it allows us to make statements about the probability that this limit (the long-term fraction of heads) exists.
Hint: The event A_{x} "the limit defined above exists and is equal to x " belongs to \mathcal{F}. However, this does not imply that $\bigcup_{x} A_{x} \in \mathcal{F}$ (why?). You need to find some other way of describing the event A in terms of unions, complements, etc., of events in the \mathcal{F}_{n}. For example, use the fact that a sequence converges if and only if it is a "Cauchy sequence."

Exercise 2. Suppose that the events A_{n} satisfy $\mathbb{P}\left(A_{n}\right) \rightarrow 0$ and $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}^{c} \cap\right.$ $\left.A_{n+1}\right)<\infty$. Show that $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$. Note: A_{n} i.o., stands for " A_{n} occurs infinitely often", or "infinitely many of the A_{n} occur", or just $\lim \sup _{n} A_{n}$. Hint: Borel-Cantelli.

Exercise 3. Consider one of our standard probability spaces $(\Omega, \mathcal{F}, \mathbb{P})$, with $\Omega=(0,1], \mathcal{F}$ - Borel and \mathbb{P} - the Lebesgue measure. To every element $\omega \in \Omega$ we assign its infinite decimal representation. We disallow decimal representations that end with an infinite string of nines. Under this condition, every number has a unique decimal representation.
(a) Let A be the set of points in $(0,1]$ whose decimal representation contains at least one digit equal to 9 . Find $\mathbb{P}[A]$.
(b) Let B be the set of points that have infinitely many 9 's in the decimal representation. Find $\mathbb{P}[B]$. (Hint: Borel-Cantelli).

Exercise 4. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let A be an event (element of \mathcal{F}). Let \mathcal{G} be collection of all events that are independent from A. Show that \mathcal{G} need not be a σ-algebra.

Exercise 5. Let A_{1}, A_{2}, \ldots and B be events.
(a) Suppose that $A_{k} \searrow A$, i.e. $A_{k} \supset A_{k+1}$ and $A=\cap_{k=1}^{\infty} A_{k}$. Assume B is independent of A_{k}. Show that B is independent of A.
(b) Suppose that A_{1} is independent of B and also that A_{2} is independent of B. Is it true that $A_{1} \cap A_{2}$ is independent of B ? Prove or give a counterexample.

Exercise 6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Show that function

$$
d(A, B) \triangleq \mathbb{P}[A \triangle B]
$$

satisfies the triangle inequality (i.e. $d(A, B) \leq d(A, C)+d(C, B)$ for any $A, B, C)$.

Fun fact: Under this pseudo-metric any algebra is dense in the σ-algebra it generates. Thus, any event in a complicated σ-algebra (such as Borel) can be approximated arbitrarily well by events in a simple algebra (like finite unions of $[a, b)$).

Exercise 7. [Optional, not to be graded] Let $\Omega_{1} \subset \Omega$ and let \mathcal{C} be some collection of subsets of Ω. Let

$$
\mathcal{C}_{1}=\mathcal{C} \cap \Omega_{1} \triangleq\left\{A \cap \Omega_{1}: A \in \mathcal{C}\right\}
$$

and denote by $\mathcal{F}_{1}(\mathcal{F})$ the minimal σ-algebra on $\Omega_{1}(\Omega)$ generated by $\mathcal{C}_{1}(\mathcal{C})$. Also define

$$
\mathcal{F}_{2}=\mathcal{F} \cap \Omega_{1} \triangleq\left\{A \cap \Omega_{1}: A \in \mathcal{F}\right\} .
$$

\mathcal{F}_{2} is called a trace of \mathcal{F} on Ω_{1}. Show $\mathcal{F}_{1}=\mathcal{F}_{2}$. (Hint: show that collection $\mathcal{G}=\left\{E \in \mathcal{F}: E \cap \Omega_{1} \in \mathcal{F}_{1}\right\}$ is a monotone class.)

Exercise 8. [Optional, not to be graded] Let $\Omega=[0,1)$ and let \mathcal{F}_{0} be the collection of finite unions $\cup_{i=1}^{N}\left[a_{i}, b_{i}\right)$ for $a_{i}, b_{i} \in[0,1]$. For any $A \in \mathcal{F}_{0}$, let $\mathbb{P}[A]=1$ if one of the $b_{i}=1$, and $\mathbb{P}[A]=0$ otherwise. In Lectures we showed that \mathcal{F}_{0} is an algebra but not a σ-algebra.
(a) Show that \mathbb{P} is a non-negative (finitely) additive set-function on \mathcal{F}_{0}.
(b) Show that \mathbb{P} is not countably additive on \mathcal{F}_{0}.

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

