6.436J/15.085J	Fall 2018
Problem Set 6	

Readings:

(a) Notes from Lecture 10 and 11.(b) [Grimmett-Stirzaker]: Section 4.1-4.10. Optionally, Section 4.11.

Exercise 1. The probabilistic method. Twelve per cent of the circumference of a circle is colored blue, the rest is red. Show that, irrespective of the manner in which the colors are distributed, it is possible to inscribe a regular octagon in the circle with all its vertices red.

Hint: The probabilistic method is a general method for proving existence: if you can prove that a randomly selected structure has certain desired properties with some positive probability (no matter how small), then a structure with these properties is guaranteed to exist.

Exercise 2. Suppose X is a continuous random variable with a power law distribution. Namely there exists c > 0 and $\alpha > 0$ such that $\mathbb{P}(X > x) = \frac{c}{x}$, for every $x \ge c$. Consider the r-th moment of X, namely $\mathbb{E}[X^r]$, where r > 0 is any real value. Find necessary and sufficient conditions for r in terms of c and for the r-th moment to be finite.

Exercise 3. We have a stick of unit length [0, 1], and break it at X, where X is uniformly distributed on [0, 1]. Given the value x of X, we let Y be uniformly distributed on [0, x], and let Z be uniformly distributed on [0, 1-x]. We assume that conditioned on X = x, the random variables Y and Z are independent. Find the joint PDF of Y and Z. Find $\mathbb{E}[X|Y]$, $\mathbb{E}[X|Z]$, and $\rho(Y, Z)$.

Exercise 4. Assume that X_1, \ldots, X_n are independent continuous random variables with common density function function f. Let $X^{(1)}, \ldots, X^{(n)}$ be the ordered statistics of X_1, \ldots, X_n . Namely, $X^{(1)}$ is the smallest of X_1, \ldots, X_n , $X^{(2)}$ is the second smallest, etc., and $X^{(n)}$ is the largest of them all. Establish that the joint distribution of $X^{(1)}, \ldots, X^{(n)}$ is given by the joint density

$$f_{X^{(1)},\dots,X^{(n)}}(x_1,\dots,x_n) = n!f(x_1)\cdots f(x_n), \qquad x_1 < x_2 < \dots < x_n,$$

and $f_{X^{(1)},...,X^{(n)}}(x_1,...,x_n) = 0$, otherwise. Use this to derive the densities for $\max_j X_j$ and $\min_j X_j$.

Exercise 5. Let X_1, \ldots, X_n be independent r.v. with $\text{Exp}(\lambda)$ distribution. Consider $S_n = \sum_{1 \le j \le n} X_j$. The distribution of S_n is sometimes called *Erlang*.

- (a) Establish that the density of S_n is $f_{S_n}(x) = \frac{\lambda^n x^{n-1}}{(n-1)!} \exp(-\lambda x)$. (A Gamma distribution with an integer shape parameter n.)
- (b) Consider the joint distribution of S₁, S₂,..., S_{n-1} given S_n = x. Establish that this joint distribution is the same as the joint distribution of U⁽¹⁾,..., U⁽ⁿ⁻¹⁾, where U⁽¹⁾,..., U⁽ⁿ⁻¹⁾ is the order statistics of n − 1 independent r.v. with U(0, x) distribution.

Exercise 6. A needle of length 2s < 1 unit is randomly tossed onto a quad-ruled sheet with horizontal and vertical lines spaced at 1 unit. Assuming the position and the angle of the needle are independent and uniform, find the average number of lines the needle intersects.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>