## MASSACHUSETTS INSTITUTE OF TECHNOLOGY

$6.436 \mathrm{~J} / 15.085 \mathrm{~J}$

## Readings:

(a) Notes from Lecture 10 and 11.
(b) [Grimmett-Stirzaker]: Section 4.1-4.10. Optionally, Section 4.11.

Exercise 1. The probabilistic method. Twelve per cent of the circumference of a circle is colored blue, the rest is red. Show that, irrespective of the manner in which the colors are distributed, it is possible to inscribe a regular octagon in the circle with all its vertices red.

Hint: The probabilistic method is a general method for proving existence: if you can prove that a randomly selected structure has certain desired properties with some positive probability (no matter how small), then a structure with these properties is guaranteed to exist.

Exercise 2. Suppose $X$ is a continuous random variable with a power law distribution. Namely there exists $c>0$ and $\boldsymbol{\alpha}>0$ such that $\mathbb{P}(X>x)=\frac{c}{x}$, for every $x \geq c$. Consider the $r$-th moment of $X$, namely $\mathbb{E}\left[X^{r}\right]$, where $r>0$ is any real value. Find necessary and sufficient conditions for $r$ in terms of $c$ and for the $r$-th moment to be finite.

Exercise 3. We have a stick of unit length $[0,1]$, and break it at $X$, where $X$ is uniformly distributed on $[0,1]$. Given the value $x$ of $X$, we let $Y$ be uniformly distributed on $[0, x]$, and let $Z$ be uniformly distributed on $[0,1-x]$. We assume that conditioned on $X=x$, the random variables $Y$ and $Z$ are independent. Find the joint PDF of $Y$ and $Z$. Find $\mathbb{E}[X \mid Y], \mathbb{E}[X \mid Z]$, and $\rho(Y, Z)$.

Exercise 4. Assume that $X_{1}, \ldots, X_{n}$ are independent continuous random variables with common density function function $f$. Let $X^{(1)}, \ldots, X^{(n)}$ be the ordered statistics of $X_{1}, \ldots, X_{n}$. Namely, $X^{(1)}$ is the smallest of $X_{1}, \ldots, X_{n}$, $X^{(2)}$ is the second smallest, etc., and $X^{(n)}$ is the largest of them all. Establish that the joint distribution of $X^{(1)}, \ldots, X^{(n)}$ is given by the joint density

$$
f_{X^{(1)}, \ldots, X^{(n)}}\left(x_{1}, \ldots, x_{n}\right)=n!f\left(x_{1}\right) \cdots f\left(x_{n}\right), \quad x_{1}<x_{2}<\cdots<x_{n}
$$

and $f_{X^{(1)}, \ldots, X^{(n)}}\left(x_{1}, \ldots, x_{n}\right)=0$, otherwise. Use this to derive the densities for $\max _{j} X_{j}$ and $\min _{j} X_{j}$.

Exercise 5. Let $X_{1}, \ldots, X_{n}$ be independent r.v. with $\operatorname{Exp}(\lambda)$ distribution. Consider $S_{n}=\sum_{1 \leq j \leq n} X_{j}$. The distribution of $S_{n}$ is sometimes called Erlang.
(a) Establish that the density of $S_{n}$ is $f_{S_{n}}(x)=\frac{\lambda^{n} x^{n-1}}{(n-1)!} \exp (-\lambda x)$. (A Gamma distribution with an integer shape parameter $n$.)
(b) Consider the joint distribution of $S_{1}, S_{2}, \ldots, S_{n-1}$ given $S_{n}=x$. Establish that this joint distribution is the same as the joint distribution of $U^{(1)}, \ldots, U^{(n-1)}$, where $U^{(1)}, \ldots, U^{(n-1)}$ is the order statistics of $n-1$ independent r.v. with $U(0, x)$ distribution.

Exercise 6. A needle of length $2 s<1$ unit is randomly tossed onto a quad-ruled sheet with horizontal and vertical lines spaced at 1 unit. Assuming the position and the angle of the needle are independent and uniform, find the average number of lines the needle intersects.

MIT OpenCourseWare
https://ocw.mit.edu

### 6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

