MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Exercise 1. Consider a discrete-time, finite-state Markov chain $\left\{X_{t}\right\}$, with states $\{1, \ldots, n\}$, and transition probabilities $p_{i j}$. States 1 and n are absorbing, that is, $p_{11}=1$ and $p_{n n}=1$. All other states are transient. Let A_{1} be the event that the state eventually becomes 1 . For any possible starting state i, let $a_{i}=\mathbf{P}\left(A_{1} \mid X_{0}=i\right)$ and assume that $a_{i}>0$ for every $i \neq n$. Conditional on the information that event A_{1} occurs, is the process X_{n} necessarily Markov? If yes, provide a proof, together with a formula for its transition probabilities. If not, provide a counterexample.

Solution: The answer is yes. Let B be an event of the form

$$
B=\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{t-1}=i_{t-1}\right\} .
$$

It suffices to show that the transition probability $\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i, A_{1}, B\right)$ is unaffected by the past history (the event B). We have

$$
\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i, A_{1}, B\right)=\frac{\mathbb{P}\left(X_{t+1}=j, A_{1} \mid X_{t}=i, B\right)}{\mathbb{P}\left(A_{1} \mid X_{t}=i, B\right)} .
$$

By the Markov property of the process $\left\{X_{t}\right\}$ (the future is independent of the past, given the present), we have

$$
\mathbb{P}\left(X_{t+1}=j, A_{1} \mid X_{t}=i, B\right)=\mathbb{P}\left(X_{t+1}=j, A_{1} \mid X_{t}=i\right),
$$

and

$$
\mathbb{P}\left(A_{1} \mid X_{t}=i, B\right)=\mathbb{P}\left(A_{1} \mid X_{t}=i\right),
$$

from which the desired result follows.
Furthermore,

$$
\begin{aligned}
\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i, A_{1}\right) & =\frac{\mathbb{P}\left(X_{t+1}=j, A_{1} \mid X_{t}=i\right)}{\mathbb{P}\left(A_{1} \mid X_{t}=i\right)} \\
& =\frac{\mathbb{P}\left(A_{1} \mid X_{t}=i, X_{t+1}=j\right) \mathbb{P}\left(X_{t+1}=j \mid X_{t}=i\right)}{\mathbb{P}\left(A_{1} \mid X_{t}=i\right)} \\
& =\frac{p_{i j} a_{j}}{a_{i}} .
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

