MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J Recitation 11

Exercise 1. Consider a discrete-time, finite-state Markov chain $\{X_t\}$, with states $\{1, \ldots, n\}$, and transition probabilities p_{ij} . States 1 and n are absorbing, that is, $p_{11} = 1$ and $p_{nn} = 1$. All other states are transient. Let A_1 be the event that the state eventually becomes 1. For any possible starting state i, let $a_i = \mathbf{P}(A_1 \mid X_0 = i)$ and assume that $a_i > 0$ for every $i \neq n$. Conditional on the information that event A_1 occurs, is the process X_n necessarily Markov? If yes, provide a proof, together with a formula for its transition probabilities. If not, provide a counterexample.

Solution: The answer is yes. Let *B* be an event of the form

$$B = \{X_0 = i_0, X_1 = i_1, \dots, X_{t-1} = i_{t-1}\}.$$

It suffices to show that the transition probability $\mathbb{P}(X_{t+1} = j \mid X_t = i, A_1, B)$ is unaffected by the past history (the event *B*). We have

$$\mathbb{P}(X_{t+1} = j \mid X_t = i, A_1, B) = \frac{\mathbb{P}(X_{t+1} = j, A_1 \mid X_t = i, B)}{\mathbb{P}(A_1 \mid X_t = i, B)}.$$

By the Markov property of the process $\{X_t\}$ (the future is independent of the past, given the present), we have

$$\mathbb{P}(X_{t+1} = j, A_1 \mid X_t = i, B) = \mathbb{P}(X_{t+1} = j, A_1 \mid X_t = i)$$

and

$$\mathbb{P}(A_1 \mid X_t = i, B) = \mathbb{P}(A_1 \mid X_t = i),$$

from which the desired result follows.

Furthermore,

$$\mathbb{P}(X_{t+1} = j \mid X_t = i, A_1) = \frac{\mathbb{P}(X_{t+1} = j, A_1 \mid X_t = i)}{\mathbb{P}(A_1 \mid X_t = i)}$$

$$= \frac{\mathbb{P}(A_1 \mid X_t = i, X_{t+1} = j)\mathbb{P}(X_{t+1} = j \mid X_t = i)}{\mathbb{P}(A_1 \mid X_t = i)}$$

$$= \frac{p_{ij}a_j}{a_i}.$$

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>