MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Exercise 1. Let X_{1} and X_{2} be independent random variables, uniform over the interval $(0,1)$. Find the PDF of $X_{1} X_{2}$.

Solution:

1. The Jacobian approach: We wish to derive the PDF of $Y_{1}=g\left(X_{1}, X_{2}\right)=X_{1} X_{2}$. Thus, we define $Y_{2}=X_{2}$ and use find the Jacobian. From the relation $x_{1}=y_{1} / x_{2}$ we see that $h\left(y_{1}, y_{2}\right)=y_{1} / y_{2}$. The partial derivative $\partial h / \partial y_{1}$ is $1 / y_{2}$. We obtain

$$
f_{Y_{1}}\left(y_{1}\right)=\int f_{X}\left(y_{1} / y_{2}, y_{2}\right) \frac{1}{y_{2}} d y_{2}=\int f_{X}\left(y_{1} / x_{2}, x_{2}\right) \frac{1}{x_{2}} d x_{2} .
$$

Recall that $X_{1}, X_{2} \stackrel{d}{=} U(0,1)$, and independent. Then, their common PDF is $f_{X_{i}}\left(x_{i}\right)=1$, for $x_{i} \in[0,1]$. Note that $f_{Y_{1}}\left(y_{1}\right)=0$ for $y \notin(0,1)$. Furthermore, $f_{X_{1}}\left(y_{1} / x_{2}\right)$ is positive (and equal to 1) only in the range $x_{2} \geq y_{1}$. Also $f_{X_{2}}\left(x_{2}\right)$ is positive, and equal to 1 , iff $x_{2} \in(0,1)$. In particular,

$$
f_{X}\left(y_{1} / x_{2}, x_{2}\right)=f_{X_{1}}\left(y_{1} / x_{2}\right) f_{X_{2}}\left(x_{2}\right)=1, \quad \text { for } x_{2} \geq y_{1}
$$

We then obtain

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{y_{1}}^{1} \frac{1}{x_{2}} d x_{2}=-\log y_{1}, \quad y_{1} \in(0,1) .
$$

2. The direct approach: The direct approach to this problem would first involve the calculation of $F_{Y_{1}}\left(y_{1}\right)=\mathbb{P}\left(X_{1} X_{2} \leq y_{1}\right)$. It is actually easier to calculate

$$
\begin{aligned}
1-F_{Y_{1}}\left(y_{1}\right)=\mathbb{P}\left(X_{1} X_{2} \geq y_{1}\right) & =\int_{y_{1}}^{1} \int_{y_{1} / x_{1}}^{1} d x_{2} d x_{1} \\
& =\int_{y_{1}}\left(1-\frac{y_{1}}{x_{1}}\right) d x_{1} \\
& =\left.\left(x_{1}-y_{1} \log x_{1}\right)\right|_{y_{1}} ^{1}=\left(1-y_{1}\right)+y_{1} \log y_{1} .
\end{aligned}
$$

Thus, $F_{Y_{1}}\left(y_{1}\right)=y_{1}-y_{1} \log y_{1}$. Differentiating, we find that $f_{Y_{1}}\left(y_{1}\right)=-\log y_{1}$.
3. The easiest approach: An even easier solution for this particular problem (along the lines of the stick example in Lecture 9) is to realize that conditioned on $X_{1}=x_{1}$, the random variable $Y_{1}=X_{1} X_{2}$ is uniform on $\left[0, x_{1}\right]$, and using the total probability theorem,

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{y_{1}}^{1} f_{X_{1}}\left(x_{1}\right) f_{Y_{1} \mid X_{1}}\left(y_{1} \mid x_{1}\right) d x_{1}=\int_{y_{1}}^{1} \frac{1}{x_{1}} d x_{1}=-\log y_{1} .
$$

Exercise 2. Let $\left\{X_{n}\right\}$ be a sequence of i.i.d. random variables, with $X_{1} \sim \exp (\lambda)$, and let $N \sim$ $\operatorname{Geom}(\beta)$ be an independent geometric random variable. Show that $T=X_{1}+\cdots+X_{N} \sim$ $\exp (\lambda \beta)$.

Solution: It is enough to show that its mgf is

$$
E\left[e^{s T}\right]=\frac{\beta \lambda}{\beta \lambda-s}
$$

Taking conditional expectation, we have

$$
E\left[e^{s T}\right]=E\left[e^{s \sum_{n=1}^{N} X_{n}}\right]=E\left[E\left[e^{s \sum_{n=1}^{i} X_{n}} \mid N=i\right]\right] .
$$

For a fixed i, we know that

$$
E\left[e^{s \sum_{n=1}^{i} X_{n}} \mid N=i\right]=\left(\frac{\lambda}{\lambda-s}\right)^{i}
$$

Combining this with what we had before, we obtain

$$
E\left[e^{s T}\right]=E\left[\left(\frac{\lambda}{\lambda-s}\right)^{N}\right]=\sum_{n=1}^{+\infty}\left(\frac{\lambda}{\lambda-s}\right)^{n} \beta(1-\beta)^{n-1}=\frac{\beta}{1-\beta} \sum_{n=1}^{+\infty}\left[\frac{\lambda(1-\beta)}{\lambda-s}\right]^{n}
$$

and thus
$\frac{\beta}{1-\beta}\left[\frac{1}{1-\frac{\lambda(1-\beta)}{\lambda-s}}-1\right]=\frac{\beta}{1-\beta}\left(\frac{\lambda-s}{\lambda-s-\lambda+\lambda \beta}-1\right)=\frac{\beta}{1-\beta}\left(\frac{\lambda-s+s-\lambda \beta}{\lambda \beta-s}\right)=\frac{\lambda \beta}{\lambda \beta-s}$.

Exercise 3. (Discrete-continuous Bayes rule) As part of a clinical trial, a patient undergoes either medical treatment A or medical treatment B. The treatment is chosen randomly, and each treatment has equal probability of being chosen. After the treatment, some health index X is observed for the patient. If treatment A is selected, the PDF of X is

$$
f_{X \mid A}(x)= \begin{cases}1 & \text { if } 0<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

If treatment B is selected, the PDF of X is

$$
f_{X \mid B}(x)= \begin{cases}3 & \text { if } 0<x \leq 1 / 3 \\ 0 & \text { otherwise }\end{cases}
$$

If we are told that the value of X was less than $1 / 4$, what is the conditional probability that treatment A was the one selected?

Solution: We have

$$
\begin{aligned}
\mathbb{P}(A \mid X<1 / 4) & =\frac{\mathbb{P}(A) \mathbb{P}(X \leq 1 / 4 \mid A)}{\mathbb{P}(A) \mathbb{P}(X \leq 1 / 4 \mid A)+\mathbb{P}(B) \mathbb{P}(X \leq 1 / 4 \mid B)} \\
& =\frac{\mathbb{P}(A) \int_{0}^{1 / 4} f_{X \mid A}(x) d x}{\mathbb{P}(A) \int_{0}^{1 / 4} f_{X \mid A}(x) d x+\mathbb{P}(B) \int_{0}^{1 / 4} f_{X \mid B}(x) d x} \\
& =\frac{0.5 \int_{0}^{1 / 4} 1 d x}{0.5 \int_{0}^{1 / 4} 1 d x+0.5 \int_{0}^{1 / 4} 3 d x} \\
& =\frac{1}{4} .
\end{aligned}
$$

Exercise 4. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. Bernoulli random variables (coin tosses), such that $\mathbb{P}\left(X_{1}=H\right)=p \in(0,1)$. Let

$$
L_{n}=\max \left\{m \geq 0: X_{n}=H, X_{n+1}=H, \ldots, X_{n+m-1}=H, X_{n+m}=T\right\}
$$

be the length of the run of heads starting from the n-th coin toss. Prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{L_{n}}{\log (n)}=\frac{1}{\log (1 / p)} \quad \text { a.s. . } \tag{1}
\end{equation*}
$$

Solution: First, note that L_{n} has the same geometric distribution for all n, i.e., we have

$$
\mathbb{P}\left(L_{n}=k\right)=(1-p) p^{k}, \quad \forall k \geq 0
$$

for all n.
For any $\epsilon>0$, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \mathbb{P}\left(\frac{L_{n}}{\log (n)}>\frac{1+\epsilon}{\log (1 / p)}\right) & \leq \sum_{n=1}^{\infty} p^{(1+\epsilon) \frac{\log (n)}{\log (1 / p)}} \\
& =\sum_{n=1}^{\infty} e^{-(1+\epsilon) \log (n)} \\
& =\sum_{n=1}^{\infty} n^{-(1+\epsilon)} \\
& <\infty
\end{aligned}
$$

Thus, Borel-Cantelli implies that

$$
\mathbb{P}\left(\limsup _{n}\left\{\frac{L_{n}}{\log (n)}>\frac{1+\epsilon}{\log (1 / p)}\right\}\right)=0
$$

Since $L_{n}>(1+\epsilon) \frac{\log (n)}{\log (1 / p)}$ only happens finitely many times, we also have

$$
\mathbb{P}\left(\limsup _{n} \frac{L_{n}}{\log (n)}>\frac{1+\epsilon}{\log (1 / p)}\right)=0
$$

Since this holds for all $\epsilon>0$, we must have

$$
\mathbb{P}\left(\limsup _{n} \frac{L_{n}}{\log (n)} \leq \frac{1}{\log (1 / p)}\right)=1
$$

On the other hand, consider the sequence of events

$$
A_{n}=\left\{X_{r_{n}}=H, \ldots, X_{r_{n}+d_{n}-1}=H\right\}
$$

where $r_{n}=n^{n}$ and $d_{n}=\lfloor\log (n) / \log (1 / p)\rfloor$. We have

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\sum_{n=1}^{\infty} p^{d_{n}}=\sum_{n=1}^{\infty} e^{d_{n} \log (p)} \geq \sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

Furthermore, note that the events A_{n} are independent. Thus, Borel-Cantelli implies that

$$
\mathbb{P}\left(A_{n} \text { i.o. }\right)=1
$$

This means that there are runs of at least $\lfloor\log (n) / \log (1 / p)\rfloor$ heads infinitely often, and thus

$$
\mathbb{P}\left(\limsup _{n} \frac{L_{n}}{\log (n)} \geq \frac{1}{\log (1 / p)}\right)=1
$$

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

