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1 PERIODICITY 

Previously we showed that when a finite state M.c. has only one recurrent class 

and ˇ is the corresponding stationary distribution, then E[Ni(t)|X0 = k]/t → 
Pt ˇi as t → ∞, irrespective of the starting state k. Since Ni(t) = I{Xn n=1 =i} 

is the number of times state i is visited up till time t, we have shown that 
P (n) 1 t 

P(Xn = i|X0 = k) → ˇi for every state k, i.e., p converges to 
t n=1 ki 

ˇi in the Cesaro sense. However, p
(n) 

, which from now on we call transient ki 

probability distribution of a Markov chain, need not converge, as the follow-

ing example shows. Consider a 2 state Markov Chain with states {1, 2} and 
(n) 

p12 = 1 = p21. Then p12 = 1 when n is odd and 0 when n is even. 

Let x be a recurrent state and consider all the times when x is accessible 

from itself, i.e., the times in the set Ix = {n ≥ 1 : pxx 
(n) 

> 0} (note that this set 

is non-empty since x is a recurrent state). One property of Ix we will make use 

of is that it is closed under addition, i.e., if m, n ∈ Ix, then m + n ∈ Ix. This 
(m+n) (m) (n) 

is easily seen by observing that pxx ≥ pxx pxx > 0. Let dx be the greatest 

common divisor of the numbers in Ix. We call dx the period of x. We now show 

that all states in the same recurrent class has the same period. 

Lemma 1. If x and y are in the same recurrent class, then dx = dy. 
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(m) (n) (m+n) (m) (n) 
Proof. Let m and n be such that pxy , pyx > 0. Then pyy ≥ pxy pyx > 0. 

(l) (m+n+l) (n) (l) (m) 
So dy divides m+n. Let l be such that pxx > 0, then pyy ≥ pyx pxxpxy > 
0. Therefore dy divides m+n+ l, hence it divides l. This implies that dy divides 

dx. A similar argument shows that dx divides dy , so dx = dy . 

A recurrent class is said to be periodic if the period d is greater than 1 and 

aperiodic if d = 1. The 2 state Markov Chain in the example above has a period 

of 2 since p11(n) > 0 iff n is even. A recurrent class with period d can be 

divided into d subsets, so that all transitions from one subset lead to the next 

subset. 

Why is periodicity of interest to us? It is because periodicity is exactly what 
(n) 

prevents the convergence of pxy to ˇy . Suppose y is a recurrent state with 
(n) 

period d > 1. Then pyy = 0 unless n is a multiple of d, but ˇy > 0. However, 

if d = 1, we have positive probability of returning to y for all time steps n 
sufficiently large. 

(n) 
Lemma 2. If dy = 1, then there exists some N ≥ 1 such that pyy > 0 for all 
n ≥ N . 

(n) 
Proof. We first show that Iy = {n ≥ 1 : pyy > 0} contains two consecutive 

integers. Let n and n + k be elements of Iy. If k = 1, then we are done. If not, 

then since dy = 1, we can find a n1 ∈ Iy such that k is not a divisor of n1. Let 

n1 = mk + r where 0 < r < k. Consider (m + 1)(n + k) and (m + 1)n + n1, 

which are both in Iy since Iy is closed under addition. We have 

(m + 1)(n + k) − ((m + 1)n + n1) = k − r < k. 

So by repeating the above argument at most k times, we eventually obtain a pair 
2 of consecutive integers m, m + 1 ∈ Iy . If N = m , then for all n ≥ N , we 

have n − N = km + r, where 0 ≤ r < m. Then n = m2 + km + r = 
r(1 + m) + (m − r + k)m ∈ Iy . 

COUPLING TECHNIQUE AND MIXING 

We now establish that when a Markov chain has one recurrent class (irreducible) 

and aperiodic, the transient distribution approaches the (unique) steady state dis-

tribution as time goes to infinity. Namely, for every two states x, y we have 
(n) 

pxy → ˇy as n → ∞. This is commonly called mixing property of a Markov 

chain. 

2 



Theorem 1. Consider an irreducible, aperiodic Markov chain. Then for all 
(n) 

states x, y, lim pxy = ˇy . 
n→∞ 

For the case of periodic chains, there is a similar statement regarding con-
(n) 

vergence of pxy , but now the convergence holds only for certain subsequences 

of the time index n. See [?] for further details. 

There are at least two generic ways to prove this theorem. One is based on 

the Perron-Frobenius Theorem which characterizes eigenvalues and eigenvec-

tors of non-negative matrices. Specifically the largest eigenvalue of P is equal 

to unity and all other eigenvalues are strictly smaller than unity in absolute value. 

The P-F Theorem is especially useful in the special case of so-called reversible 
M.c.. These are irreducible M.c. for which the unique stationary distribution 

satisfies ˇxpxy = ˇypyx for all states x, y. The subject of reversible M.c. is a 

rich subject on its own and is outside of the scope of this lecture. In the spe-

cial case of reversible M.c. the following important refinement of Theorem 1 is 

known. 

Theorem 2. Consider an irreducible aperiodic Markov chain which is reversible. 
Then there exists a constant C such that for all states x, y, |pxy 

(n) 
−ˇy| ≤ C|�2|

n , 
where �2 is the second largest (in absolute value) eigenvalue of P . 

Since by P-F Theorem |�2| < 1, this theorem is indeed a refinement of 

Theorem 1 as it gives a concrete rate of convergence to the steady-state. 

We adopt a different approach which does not rely on the reversibility as-

sumption. The main technique underlying our approach is the method of cou-

pling, which we now discuss. The method of coupling allows combining two 

Markov chains into one by building them on the same probability space. Intu-

itively, two Markov chains Xn and Yn are coupled if we construct out of them 

a single Markov chain Zn = (Xn, Yn) such that each ”marginal” Markov chain 

Xn and Yn behaves as an individual Markov chain before coupling, but the evo-

lution of Xn and Yn is in general dependent. Formally 
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Definition 1. Given two Markov chains Xn and Yn on state spaces {1, . . . , N} 
and {1, . . . ,M}, respectively, and transition probability matrices 

P = (pxy, 1 ≤ x, y ≤ N) and Q = (qxy, 1 ≤ x, y ≤ M), a coupling of Xn 

and Yn is any Markov chain Zn with a state space {1, . . . , N}×{1, . . . ,M} 
and a transition matrix 

� � 
R = r(x1,x2),(y1,y2), 1 ≤ x1, y1 ≤ N, 1 ≤ x2, y2 ≤ M , 

which satisfies the following properties: for every 1 ≤ x1, y1 ≤ N and 

1 ≤ x2 ≤ M , 

M 
X 

, r(x1,x2),(y1,y2) = px1,y1 

y2=1 

and for every 1 ≤ x1 ≤ N and 1 ≤ x2, y2 ≤ M , 

N 
X 

, r(x1,x2),(y1,y2) = qx2,y2 

y1=1 

In words, coupling Zn = (Xn, Yn) of two Markov chains Xn and Yn means 

that the Markov chain Xn transitions from state x1 to state y1 with probability 

px1,y1 , regardless of the state of the Yn, and vice verse. 

How do we know that the definition of the coupling is not vacuous and at 

least one coupling exists? This is easy: simply consider running chains Xn 

and Yn independently and set Zn = (Xn, Yn). Formally, set r(x1,x2),(y1,y2) = 
px1,y1 qx2,y2 for all x1, x2, y1, y2. It is easy to check that this leads to a valid 

coupling. However, this is also the least useful coupling. We now consider 

a different coupling idea applied in the special case when M = N and Q = 
P . Namely, we will couple a Markov chain Xn with itself. For convenience, 

we again use notation Xn and Yn, though now Yn has the same state space 

{1, . . . , N} and transition matrix Q = P as Xn. We now defined the coupled 

chain Zn = (Xn, Yn) according to the following rules 

 
 px1,y1 px2,y2 , when x1 =6 x2; 

= , when x1 = x2, y1 = y2; r(x1,x2),(y1,y2) px1,y1 
 

0, when x1 = x2, y1 6= y2; 

In words, the Markov chains Xn and Yn run independently until they collide for 

the first time in the same state Xn = Yn = x. Once this happen, they transition 
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to a new state y which is the same for Xn and Yn with probability pxy - the 

transition probability of the original Markov chain. Again, it is easy to check 

that R = (r(x1 ,x2),(y1,y2)) defines a valid coupling of the Markov chain Xn with 

itself. We define T to be the first (random) time when two copies of M.c. collide 

for the first time. Namely, T = min{n ≥ 0 : Xn = Yn}. Then, Xn = Yn for 

all n ≥ T . We define T to be infinite if the states never collide. We now ready 

to prove the ”mixing” theorem. 

Proof of Theorem 1. Fix an arbitrary two states x0 and y0. We need to show that 
(n) 

limn→∞ px0,y0 = ˇy0 . We assume for simplicity that all transition probabilities 

are positive: pxy > 0, ∀x, y ∈ {1, . . . , N}. The general case is the subject of an 

exercise. Fix any � > 0 such that pxy ≥ � for all states x, y. Consider a coupling 

Zn = (Xn, Yn) of Xn with itself described above. To completely describe the 

probabilistic evolution of Zn we need to specify the initial distribution Z0. We 

will be judicious about this. Specifically, let Xn = x0 with probability one and 

let Yn be distributed according to ˇ. Formally, P(Z0 = (x0, x)) = ˇx, and 
′ ′ 

P(Z0 = (x , x)) = 0 for all x 6= x. This in particular, means that P(Yn = x) = 
(n) 

ˇx for all n and P(Xn = x) = px0,x, though notice that we explicitly write 

down the joint probability of Xn and Yn in terms of P and ˇ, since Xn and Yn 

run dependently. 

Let T ≥ 0 be defined as above - the first time when Xn = Yn. Observe that, 

if the Markov chains Xn and Yn did not collide by time n, they will collide at 

time n + 1 with probability at least �, since every state is reachable with proba-

bility �. Therefore, P(T ≥ t) ≤ �t . In particular, by continuity of probabilities, 

P(T = ∞) = limt P(T ≥ t) = 0. Now we have 

P(Xn = y0) = P(Xn = y0, T ≤ n) + P(Xn = y0, T > n) 

≤ P(Xn = y0, T ≤ n) + P(T > n) 

= P(Yn = y0, T ≤ n) + P(T > n) 

≤ P(Yn = y0) + P(T > n) 

= ˇy0 + P(T > n). 

Here the second equality is valid since on the event T ≤ n we have Xn = Yn 

(the collision took place at time n or earlier). Taking, the limit of both sides we 

obtain 

lim sup P(Xn = y0) ≤ ˇy0 . 
n 
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(n) 
But recall that P(Xn = y0) = px0,y0 . Similarly, we have 

P(Xn = y0) ≥ P(Xn = y0, T ≤ n) 

= P(Yn = y0, T ≤ n) 

= P(Yn = y0) − P(Yn = y0, T > n) 

≥ P(Yn = y0) − P(T > n) 

≥ ˇy0 − P(T > n). 

Again, by taking limits, we obtain lim infn P(Xn = y0) ≥ ˇy0 . Combining, we 
(n) 

obtain limn P(Xn = y0) = limn px0,y0 = ˇy0 and the proof is complete. 

ABSORBTION PROBABILITY AND EXPECTED TIME TILL AB-

SORBTION 

We have considered the long-term behavior of Markov chains. Now, we study 

the short-term behavior. In such considerations, we are concerned with the be-

havior of the chain starting in a transient state, till it enters one of the recurrent 

state. For simplicity, we can therefore assume that every recurrent state i is ab-

sorbing, i.e., pii = 1. The Markov chain that we will work with in this section 

has only transient and absorbing states. 

If there is only one absorbing state i, then ˇi = 1, and i is reached with 

probability 1. If there are multiple absorbing states, the state that is entered is 

random, and we are interested in the absorbing probability 

aki = P(Xn eventually equals i | X0 = k), 

i.e., the probability that state i is eventually reached, starting from state k. Note 

that aii = 1 and aji = 0 for all absorbing j =6 i. When k is a transient state, we 

have 

aki = P(∃n : Xn = i | X0 = k) 
N 
X 

= P(∃n : Xn = i | X1 = j)pkj 
j=1 

N 
X 

= ajipkj. 
j=1 

So we can find the absorption probabilities by solving the above system of linear 

equations. 
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Example: Gambler’s Ruin A gambler wins 1 dollar at each round, with prob-

ability p, and loses a dollar with probability 1 − p. Different rounds are inde-

pendent. The gambler plays continuously until he either accumulates a target 

amount m or loses all his money. What is the probability of losing his fortune? 

We construct a Markov chain with state space {0, 1, . . . ,m}, where the state 

i is the amount of money the gambler has. So state i = 0 corresponds to losing 

his entire fortune, and state m corresponds to accumulating the target amount. 

The states 0 and m are absorbing states. We have the transition probabilities 

pi,i+1 = p, pi,i−1 = 1 − p for i = 1, 2, . . . ,m − 1, and p00 = pmm = 1. To find 

the absorbing probabilities for the state 0, we have 

a00 = 1, 

am0 = 0, 

ai0 = (1 − p)ai−1,0 + pai+1,0, for i = 1, . . . ,m − 1. 

Let bi = ai0 − ai+1,0, ˆ = (1 − p)/p, then the above equation gives us 

(1 − p)(ai−1,0 − ai0) = p(ai0 − ai+1,0). 

Namely, bi = ˆbi−1. So we obtain bi = ˆib0. Note that b0 + b1 + · · · + bm−1 = 
a00 − am0 = 1, hence (1 + ˆ + . . . + ˆm−1)b0 = 1, which gives us 

( 
ˆi(1−ˆ) , if ˆ =6 1, 

bi = 1−ˆm 

1 , if ˆ = 1. 
m 

Finally, ai,0 can be calculated. For ˆ 6= 1, we have for i = 1, . . . ,m − 1, 

ai0 = a00 − bi−1 − . . . − b0 

= 1 − (ˆi−1 + . . . + ˆ + 1)b0 

1 − ˆi 1 − ˆ 
= 1 − 

1 − ˆ 1 − ˆm 

ˆi − ˆm 

= 
1 − ˆm 

and for ˆ = 1, 

m − i 
ai0 = . 

m 

This shows that for any fixed i, if ˆ > 1, i.e., p < 1/2, the probability of 

losing goes to 1 as m → ∞. Hence, it suggests that if the gambler aims for a 
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large target while under unfavorable odds, financial ruin is almost certain. 

The expected time of absorption µk when starting in a transient state k can be 

defined as µk = E[min{n ≥ 1 : Xn is recurrent} | X0 = k]. A similar analysis 

by conditioning on the first step of the Markov chain shows that the expected 

time to absorption can be found by solving 

µk = 0 for all recurrent states k, 

N 
X 

µk = 1 + pkjµj for all transient states k. 
j=1 
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