MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Boilerplate:

- No collaboration
- No internet
- Closed books, Closed notes.
- Two (2-sided) cheat sheets allowed.
- Total: 100 pts
- Partial credit will be given (but please write clearly).

Exercise 1 (10 pts). (Cautious Gambler's ruin) A gambler starts with $k \in [0, n]$ dollars and at each time step either skips a turn, or bets and wins 1 dollar, or bets and loses 1 dollar – all three cases happening with equal probability, independently across time. If he gets to n dollars, he stops and we say he "won". If he gets to 0 dollars he also stops and we say he is "ruined".

- 1. Show that eventually he must win or be ruined.
- 2. Find the probability that he wins.

Exercise 2 (20 pts). Suppose A_1, A_2, \ldots are independent events with $\mu_n = \sum_{i=1}^n \mathbb{P}(A_i) \to \infty$ as $n \to \infty$. Let

$$X_n := \frac{1}{\mu_n} \sum_{i=1}^n \mathbf{1}_{A_i}$$

- 1. Prove $X_n \stackrel{\text{i.p.}}{\rightarrow} 1$
- 2. Prove $X_n \stackrel{L_1}{\to} 1$. (Hint: $\mathbb{E}[|V|] \leq \sqrt{\mathbb{E}[V^2]}$. What do you know about the variance of the sum of independent RVs?)
- 3. Prove $X_n \xrightarrow{\text{a.s.}} 1$ (Hint: first, let subsequence n_k be such that $(k-1)^4 \le \mu_{n_k} \le k^4$. What can you say about $\{|X_{n_k} 1| > \frac{1}{k} \text{i.o.}\}$?)

Exercise 3 (15 pts). Two players are playing the following game. At time $t \ge 1$ both players generate random moves: player A's move is A_t and player B's move is B_t . The moves are iid and independent of each other. If $\sum_{s=1}^{t} A_s \ge \sum_{s=1}^{t} B_s$ then player A is declared a winner at step t (and we set $X_t = 0$), otherwise we say player B is a winner at step t (and set $X_t = 1$).

- 1. Let A_t be ± 2 with equal probability and B_t be ± 1 with equal probability. Find $\lim_{t\to\infty} \mathbb{P}[X_t = 1]$.
- 2. Now suppose both A_t and B_t are ± 1 with equal probability (and independently of each other). Find $\lim_{t\to\infty} \mathbb{P}[X_t = 1]$.
- 3. In the setting from part 2 show that X_t almost surely does not converge. (Hint: How many times do two symmetric random walks on \mathbb{Z} meet?)

Exercise 4 (10pts). Consider a finite-state homogeneous Markov chain with transition matrix P(i, j). Suppose that for a certain state T we have P(T, T) = 1 and $P(i, T) = \epsilon > 0$ for all $i \neq T$. Let X_0, X_1, \ldots, X_n be a trajectory of this Markov chain, started from some distribution $X_0 \sim \pi$ with $\pi(T) < 1$. Show that conditioned on $X_n \neq T$ the law of the sequence X_0, \ldots, X_n is still a Markov chain. Find its transition matrix \tilde{P} and initial distribution $\tilde{\pi}$ (i.e. $\tilde{\pi}$ is the law of X_0 given $\{X_n \neq T\}$). (Hint: you need to compute $\mathbb{P}[X_0 = a_0, \ldots, X_n = a_n | X_n \neq T]$ and factorize it.)

Exercise 5 (10 pts). Two friends are observing iid sequence $X_i \sim \text{Ber}(p)$ with unknown $p \in [0, 1]$, which they are trying to learn from the observations. They decide to record their observations as a running sum $S_t = \sum_{i=1}^t X_i$. Having observed n samples they start arguing. One says that they can write down the value S_n and forget $S_1, S_2, \ldots, S_{n-1}$, since it won't help in determining p. The other one argues that there might be some useful information in the trajectory S_1, \ldots, S_{n-1} that will help learn p better. Who is right? (Hint: find $\mathbb{P}[S_1 = a_1, \ldots, S_{n-1} = a_{n-1} | S_n = a_n]$ as a function of p.)

Exercise 6 (15pts). Let X_i be independent with $\mathbb{P}[X_i = \frac{1}{p_i}] = 1 - \mathbb{P}[X_i = 0] = p_i$. Let $M_t = \prod_{i=1}^t X_i$, and $M_0 = 1$. Denote $a = \prod_{i=1}^\infty p_i$.

- 1. Find $\mathbb{E}[M_t]$.
- 2. Show that M_t converges almost surely to a random variable M_{∞} and find its distribution. (Hint: you may want to consider cases of a = 0 and a > 0 separately).
- 3. If a = 0 is collection $\{M_t, t = 0, 1, ...\}$ uniformly integrable? (Hint: compute $\mathbb{E}[M_{\infty}]$)
- 4. If a > 0 is collection $\{M_t, t = 0, 1, ...\}$ uniformly integrable?

Exercise 7 (20 pts). Two drunks walk along a street with n blocks (and n+1 intersections labeled $0, 1, \ldots, n$), starting at locations a and b (where a, b have the same parity, i.e. $a = b \mod 2$). Two bars are located at 0 and n. Before he reaches a bar, each drunk performs a random walk, moving either left or right at every step with probability 1/2 (independent of past steps); when a drunk arrives at a bar, he stops walking and goes in. If the two drunks meet they keep moving together ever after (still with probability 1/2 left-right).

What is the probability that the two drunks meet (either at a bar or while walking)? Consider three cases:

- 1. Their random walks are independent.
- 2. At each step they either both move right or both move left with equal probability. (If one of them is already captured by a bar, then only the remaining one keeps moving randomly.)
- 3. At each step they either both towards each other, or away from each other with equal probability. (If one of them is already captured by a bar, then only the remaining one keeps moving randomly.)

Hint: Think about union and intersection of events "left drunk goes to right bar", "right drunk goes to left bar".

Figure 1: The drunks at the start of the process.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>