Complements are independent too

Problem 0.1. Let $\{A_i\}_{i \in T}$ be a (possibly infinite, possibly uncountable) set of independent events. Prove that $\{A_i^c\}_{i \in T}$ is also independent.

Recall that independence means: for every finite $I \subseteq T$,

$$\mathbb{P}\bigg[\bigcap_{i\in I}A_i\bigg] = \prod_{i\in I}\mathbb{P}[A_i]$$

This can be done in other ways, e.g. by induction (though it's a little bit of a pain) - the proof we'll use involves the Inclusion-Exclusion formula.

Proof. What we want to prove is that

$$\mathbb{P}\bigg[\bigcap_i A_i^c\bigg] = \prod_i \mathbb{P}[A_i^c]$$

given that the $\{A_i\}$ are independent. We start by rewriting

$$\prod_{i} \mathbb{P}[A_{i}^{c}] = \prod_{i} \left(1 - \mathbb{P}[A_{i}]\right)$$
$$= 1 - \sum_{\text{all } i} \mathbb{P}[A_{i}] + \sum_{\text{all } (i,j)} \mathbb{P}[A_{i}]\mathbb{P}[A_{j}] - \sum_{\text{all } (i,j,k)} \mathbb{P}[A_{i}]\mathbb{P}[A_{j}]\mathbb{P}[A_{k}]..$$

(where "all (i, j, k, ...)" refers only to *unordered* subsets of [n]). By independence of $\{A_i\}$ these products are just the probabilities of intersections, so (grouping the sum terms together) the above is

$$1 - \left(\sum_{\text{all }i} \mathbb{P}[A_i] - \sum_{\text{all }(i,j)} \mathbb{P}[A_i \cap A_j] + \sum_{\text{all }(i,j,k)} \mathbb{P}[A_i \cap A_j \cap A_k] \dots\right)$$

But the thing inside the big parens is just the inclusion-exclusion formula! So we get

$$= 1 - \mathbb{P}\left[\bigcup_{i} A_{i}\right] = \mathbb{P}\left[\left(\bigcup_{i} A_{i}\right)^{c}\right] = \mathbb{P}\left[\bigcap_{i} A_{i}^{c}\right]$$

and we are done.

Remark: This technique can also be used to show that changing any subset of the A_i to their complements also preserves independence.

Measuring probability of converging to an average density of x heads

Problem 0.2. Consider the infinite-coin-toss model $(\Omega = \{0, 1\}^{\infty})$, and σ -algebra \mathcal{F} developed in Lecture 2). Fix some $x \in [0, 1]$. Is the set of all sequences whose proportion of 1's converges to x measurable in \mathcal{F} ?

Proof. First, we need to define our event. We call it

$$A_x := \left\{ \omega : \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \omega_i = x \right\}$$

To make this easier to work with, we note that $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \omega_i = x$ just means "for all $m \ge 1$, there exists some N > 0 (both m, N are integers) such that

for all
$$n \ge N$$
, $\frac{1}{n} \sum_{i=1}^{n} \omega_i - x \le \frac{1}{m}$

We use this to define a collection of sets

$$S_{m,N} := \left\{ \omega : \text{ for all } n \ge N, \quad \frac{1}{n} \sum_{i=1}^{n} \omega_i - x \le \frac{1}{m} \right\}$$

Replacing "there exists" and "for all" with their equivalent set operations (\cup and \cap respectively) we get

$$A_x = \bigcap_{m=1}^{\infty} \bigcup_{N=1}^{\infty} S_{m,N}$$

So if we can show that $S_{m,N} \in \mathcal{F}$ for all m, N, we are done. To do so, let's fix m, N and define for all $k \geq 0$,

$$S_{m,N,k} := \left\{ \omega : \text{ for } n \in \{N, N+1, \dots, N+k\}, \quad \frac{1}{n} \sum_{i=1}^{n} \omega_i - x \le \frac{1}{m} \right\}$$

Then we note two facts:

- $S_{m,N} = \bigcap_{k=0}^{\infty} S_{m,N,k};$
- $S_{m,N,k} \in \mathcal{F}_{N+k} \subset \mathcal{F}_0$ (the algebra from which the σ -algebra \mathcal{F} is built)

These facts together show that $S_{m,N} \in \sigma(\mathcal{F}_0) = \mathcal{F}$, and therefore $A_x \in \mathcal{F}$ as well.

Of monkeys and typewriters: applying Borel-Cantelli

If you've ever heard the common statement that "a monkey at a typewriter will eventually write the entire works of Shakespeare (infinitely many times, no less)", this is what it really means.

Problem 0.3. Suppose we have an infinite sequence of random coin flips - so $\Omega = \{0, 1\}^{\infty}$ - in which each coin flip is independent and has probability of producing 1 ("heads") with probability $p \in (0,1)$. Let $b \in \{0,1\}^{\ell}$ be any finite pattern (so ℓ is any positive integer). Prove that, almost surely, the pattern b occurs infinitely many times in the sequence.

To help prove this, we have the Borel-Cantelli lemma:

Proposition 0.1 (Borel-Cantelli (part 2)). Given a sequence A_n of events such that (i) $\sum_n \mathbb{P}[A_n] = \infty$ and (ii) the events $\{A_n\}$ are independent, and defining $A := \{A_n \text{ i.o.}\}$ (note: see lecture 3 notes for the definition of this), then $\mathbb{P}[A] = 1$.

Proof. The intuition is that we break up our outcome ω into disjoint ℓ -length blocks (running from bit $(n-1)\ell + 1$ to bit $n\ell$ so the first block goes from 1 to ℓ); letting b have j zeroes and k ones $(j + k = \ell)$, and fixing a particular block $\omega_{((n-1)\ell+1):(n\ell)}$, let A_n be the event that this block is actually equal to b, i.e.

$$A_n = \{\omega : \omega_{((n-1)\ell+1):(n\ell)} = b\}$$

Then, we have

$$\mathbb{P}[A_n] = (1-p)^j p^k > 0 \text{ (because } p \neq 0, 1)$$

Therefore, $\sum_{n} \mathbb{P}[A_n] = \infty$; furthermore, the events $\{A_n\}$ are independent because the blocks don't overlap. So, almost surely, infinitely many of the A_n come true – and if this happens the sequence *b* occurs infinitely many times, as we wanted.

Remark: In reality, I have a hard time believing that a monkey in front of a typewriter will produce a sequence of independent letters, but for the sake of the metaphor we'll pretend that it does.

Lebesgue measure on $\mathbb R$

See lecture notes (lecture 2).

EXTRA: Pairwise independence is not independence!

Not covered in recitation, and probably most people have already seen this, but something you should definitely know:

Problem 0.4. If a collection of events $\{A_i\}$ are pairwise independent under a probability distribution (i.e. for any $i \neq j$, $\mathbb{P}[A_i \cap A_j] = \mathbb{P}[A_i]\mathbb{P}[A_j]$) are they necessarily independent as a collection?

No, they aren't.

Proof. We'll construct a simple counterexample in the two-fair-coins model $(\Omega = \{0, 1\}^2, \mathcal{F} = 2^{\Omega}, \mathbb{P}$ uniform). Let " \oplus " be the XOR operation, and define:

- $A_1 := \{ \omega : \omega_1 = 1 \};$
- $A_2 := \{ \omega : \omega_2 = 1 \};$
- $A_{\oplus} := \{\omega_1 \oplus \omega_2 = 1\}.$

It is easy to check that each event has two elements, and so $\mathbb{P}[A_1] = \mathbb{P}[A_2] = \mathbb{P}[A_{\oplus}] = 1/2$; it's also easy to check that every pair of events is only satisfied by one elementary outcome (probability = 1/4), and so they are pairwise independent.

However, for them to be independent we would need $\mathbb{P}[A_1]\mathbb{P}[A_2]\mathbb{P}[A_{\oplus}] = \mathbb{P}[A_1 \cap A_2 \cap A_{\oplus}]$ as well – but the left-hand side is 1/8 whereas the right-hand side is actually 0 because no event is in all three at once.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>