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Complements are independent too 

Problem 0.1. Let {Ai}i∈T be a (possibly infinite, possibly uncountable) set of independent 
events. Prove that {Ac}i∈T is also independent. i 

Recall that independence means: for every finite I ⊆ T , �\ � Y 
P Ai = P[Ai] 

i∈I i∈I 

This can be done in other ways, e.g. by induction (though it’s a little bit of a pain) - the proof 
we’ll use involves the Inclusion-Exclusion formula. 

Proof. What we want to prove is that �\ � Y 
P Ac = P[Ac

i ] i 
i i 

given that the {Ai} are independent. We start by rewriting Y Y� � 
P[Ac

i ] = 1 − P[Ai] 
i i X X X 

= 1 − P[Ai] + P[Ai]P[Aj ] − P[Ai]P[Aj ]P[Ak] . . . 
all i all (i,j) all (i,j,k) 

(where “all (i, j, k, . . . )” refers only to unordered subsets of [n]). By independence of {Ai} these 
products are just the probabilities of intersections, so (grouping the sum terms together) the 
above is � �X X X 

1 − P[Ai] − P[Ai ∩ Aj ] + P[Ai ∩ Aj ∩ Ak] . . . 
all i all (i,j) all (i,j,k) 

But the thing inside the big parens is just the inclusion-exclusion formula! So we get # �[ � "�[ � �\ � c 

Ac = 1 − P = P = P Ai Ai i 
i i i 

and we are done. 

Remark: This technique can also be used to show that changing any subset of the Ai to their 
complements also preserves independence. 
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Measuring probability of converging to an average density of x heads 

Problem 0.2. Consider the infinite-coin-toss model (Ω = {0, 1}∞ , and σ-algebra F devel-
oped in Lecture 2). Fix some x ∈ [0, 1]. Is the set of all sequences whose proportion of 1’s 
converges to x measurable in F? 

Proof. First, we need to define our event. We call it 

n n X o 1 
Ax := ω : lim ωi = x 

n→∞ n 
i=1 

1 P n To make this easier to work with, we note that limn→∞ ωi = x just means “for all m ≥ 1, n i=1 
there exists some N > 0 (both m, N are integers) such that 

nX 1 1 
for all n ≥ N, ωi − x ≤ 

n m 
i=1 

We use this to define a collection of sets 
n n X o 1 1 

Sm,N := ω : for all n ≥ N, ωi − x ≤ 
n m 

i=1 

Replacing “there exists” and “for all” with their equivalent set operations (∪ and ∩ respectively) 
we get 

∞ ∞ \ [ 
Ax = Sm,N 

m=1 N=1 

So if we can show that Sm,N ∈ F for all m, N , we are done. To do so, let’s fix m, N and define 
for all k ≥ 0, n n o X 1 1 

Sm,N,k := ω : for n ∈ {N, N + 1, . . . , N + k}, ωi − x ≤ 
n m 

i=1 

Then we note two facts: T∞ • Sm,N = k=0 Sm,N,k; 

• Sm,N,k ∈ FN+k ⊂ F0 (the algebra from which the σ-algebra F is built) 

These facts together show that Sm,N ∈ σ(F0) = F , and therefore Ax ∈ F as well. 
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Of monkeys and typewriters: applying Borel-Cantelli 

If you’ve ever heard the common statement that “a monkey at a typewriter will eventually write 
the entire works of Shakespeare (infinitely many times, no less)”, this is what it really means. 

Problem 0.3. Suppose we have an infinite sequence of random coin flips - so Ω = {0, 1}∞ 

- in which each coin flip is independent and has probability of producing 1 (“heads”) with 
probability p ∈ (0, 1). Let b ∈ {0, 1}` be any finite pattern (so ` is any positive integer). 
Prove that, almost surely, the pattern b occurs infinitely many times in the sequence. 

To help prove this, we have the Borel-Cantelli lemma: 

Proposition 0.1 (Borel-Cantelli (part 2)). Given a sequence An of events such that (i) P 
P[An] = ∞ and (ii) the events {An} are independent, and defining A := {An i.o.} (note: n 

see lecture 3 notes for the definition of this), then P[A] = 1. 

Proof. The intuition is that we break up our outcome ω into disjoint ̀ -length blocks (running 
from bit (n − 1)` + 1 to bit n` so the first block goes from 1 to ̀ ); letting b have j zeroes and 
k ones (j + k = `), and fixing a particular block ω((n−1)`+1):(n`), let An be the event that this 
block is actually equal to b, i.e. 

An = {ω : ω((n−1)`+1):(n`) = b} 

Then, we have 
k P[An] = (1 − p)j p > 0 (because p =6 0, 1) P 

Therefore, P[An] = ∞; furthermore, the events {An} are independent because the blocks n 
don’t overlap. So, almost surely, infinitely many of the An come true – and if this happens the 
sequence b occurs infinitely many times, as we wanted. 

Remark: In reality, I have a hard time believing that a monkey in front of a typewriter will 
produce a sequence of independent letters, but for the sake of the metaphor we’ll pretend that 
it does. 
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Lebesgue measure on R 

See lecture notes (lecture 2). 
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EXTRA: Pairwise independence is not independence! 

Not covered in recitation, and probably most people have already seen this, but something you 
should definitely know: 

Problem 0.4. If a collection of events {Ai} are pairwise independent under a probability 
distribution (i.e. for any i 6= j, P[Ai ∩ Aj ] = P[Ai]P[Aj ]) are they necessarily independent 
as a collection? 

No, they aren’t. 

Proof. We’ll construct a simple counterexample in the two-fair-coins model (Ω = {0, 1}2 , F = 2Ω , 
P uniform). Let “⊕” be the XOR operation, and define: 

• A1 := {ω : ω1 = 1}; 

• A2 := {ω : ω2 = 1}; 

• A⊕ := {ω1 ⊕ ω2 = 1}. 

It is easy to check that each event has two elements, and so P[A1] = P[A2] = P[A⊕] = 1/2; 
it’s also easy to check that every pair of events is only satisfied by one elementary outcome 
(probability = 1/4), and so they are pairwise independent. 

However, for them to be independent we would need P[A1]P[A2]P[A⊕] = P[A1 ∩ A2 ∩ A⊕] as 
well – but the left-hand side is 1/8 whereas the right-hand side is actually 0 because no event is 
in all three at once. 
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