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In the previous lecture: 

(a) We defined the notion of an integral of a measurable function with respect 
R 

to a measure ( g dµ), which subsumes the special case of expectations 
R 

(E[X] = X dP), where X is a random variable, and P is a probability 

measure. 

(b) We saw that integrals are always well-defined, though possibly infinite, if 

the function being integrated is nonnegative. 

(c) For a general function g, we decompose it as the sum g = g+ − g− of a 

positive and a negative function, and integrate each piece separately. The 
R R 

integral is well defined unless both g+ dµ and g− dµ happen to be infi-

nite. 

(d) We saw that integrals obey a long list natural properties, including linearity: 
R R R 

(g + h) dµ = g dµ + h dµ. 

(e) We stated the Monotone Convergence Theorem (MCT), according to which, 

if {gn} is a nondecreasing sequence of nonnegative measurable functions 
R R 

that converge pointwise to a function g, then limn→∞ gn dµ = g dµ. 

(f) Finally, we saw that for every nonnegative measurable function g, we can 

find an nondecreasing sequence of nonnegative simple functions that con-

verges (pointwise) to g. 
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BOREL-CANTELLI REVISITED 

P∞ 
Recall that one of the Borel-Cantelli lemmas states that if i=1 P(Ai) < ∞, 

then P(Ai i.o.) = 0. In this section, we rederive this result using the new ma-

chinery that we have available. 

Let Xi be the indicator function of the event Ai, so that E[Xi] = P(Ai). 
P∞ Pn 

Thus, by assumption The random variables Xi are i=1 E[Xi] < ∞. i=1 
nonnegative and form an increasing sequence, as n increases. Furthermore, 

n ∞ 
X X 

lim Xi = Xi, 
n→∞ 

i=1 i=1 
P P∞ n pointwise; that is, for every !, we have limn→∞ i=1 Xi(!) = i=1 Xi(!). 

We can now apply the MCT, and then the linearity property of expectations 

(for finite sums), to obtain 

∞ n 
h i h i 

X X 

E Xi = lim E Xi 
n→∞ 

i=1 i=1 
n 
X 

= lim E[Xi] 
n→∞ 

i=1 
n 
X 

= lim P(Ai) 
n→∞ 

i=1 
∞ 
X 

= P(Ai) 
i=1 

< ∞. 
P∞ 

This implies that i=1 Xi < ∞, a.s. (This is intuitively obvious, but a short 

formal proof is actually needed.) It follows that, with probability 1, only finitely 

many of the events Ai can occur. Equivalently, the probability that infinitely 

many of the events Ai occur is zero, i.e., P(Ai i.o.) = 0. 

CONNECTIONS BETWEEN ABSTRACT INTEGRATION AND EL-

EMENTARY DEFINITIONS OF INTEGRALS AND EXPECTATIONS 

Abstract integration would not be useful theory if it were inconsistent with the 

more elementary notions of integration. For discrete random variables taking 

values in a finite range, this consistency is automatic because of the definition of 

an integral of a simple function. We will now verify some additional aspects of 

this consistency. 
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2.1 Connection with Riemann integration. 

We state here the following reassuring result. Let = R and � be the Lebesgue 

measure (considered on either Borel ˙-algebra, or its completion the Lebesgue 

˙-algebra). Suppose that f is a Riemann integrable function on some interval 

[a, b]. Then, f is Lebesgue-measurable and its Lebesgue integral equals the 

Riemann integral: 

Z Z Z b 

f(x) dx = f d� = 1[a,b]f d� 
a [a,b] R

In particular, every Borel function’s Lebesgue integral coincides with its Rie-

mann integral whenever the latter exists. 

Proof (optional). Consider an arbitrary finite partition ˙ of [a, b]. Cor-

responding to each ˙ there is a piece-wise constant (hence simple) function 
′ f˙(x) ≤ f(x) and f˙(x) ≥ f(x) such that 

Z 

f˙d� = L(˙) (1) 
[a,b] 

Z 

′ f˙d� = U(˙) (2) 
[a,b] 

where L(˙) and U(˙) are lower and upper Darboux sums (defined in Lecture 

7). There exists a sequence of partitions ˙n, each refining the previous one, such 

that 

L(˙n) ր sup L(˙) (3) 
˙ 

U(˙n) ց inf U(˙) . (4) 
˙ 

′ On the other hand the corresponding sequences of functions f˙n and f are ˙n 

monotone, hence converging: 

f˙n (x) ր f(x) ≤ f(x) ∀x ∈ [a, b] (5) 

′ f (x) ց f(x) ≥ f(x) ∀x ∈ [a, b] (6) ˙n 

From (1)-(2) and Riemann integrability we conclude that 

Z Z Z b 

fd� = fd� = g(x)dx . (7) 
[a,b] [a,b] a 

R 

Consequently, |f − f |d� = 0 and thus 

f(x) = fx = f(x) for a.e. x 
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implying f is Lebesgue measurable (and coincides with some Borel measur-

able function except on a set of measure zero). The equality of Lebesgue and 

Riemann integrals of f in turn follows from (7). 

2.2 Evaluating expectations by integrating on different spaces 

Consider a probability space ( , F , P). Let X : → R, be a random variable. 

We then obtain a second probability space (R, B, PX ), where B is the Borel 

˙-field, and PX is the probability law of X, defined by 

PX (A) = P({! ∈ | X(!) ∈ A}), A ∈ B. 

Consider now a measurable function g : R → R, and use it to define a new ran-

dom variable Y = g(X), and a corresponding probability space (R, B, PY ). The 

expectation of Y can be evaluated in three different ways, that is, by integrating 

over either of the three spaces we have introduced. 

Theorem 1. We have 
Z Z Z 

Y dP = g dPX = y dPY , 

R 

and all three ’s exist or do not exist simultaneously. 

Proof: We follow the “standard program”: first establish the result for simple 

functions, then take the limit to deal with nonnegative functions, and finally 

generalize. 

Let g be a simple function, which takes values in a finite set y1, . . . , yk. 

Using the definition of the integral of a simple function we have 

Z 

X 

Y dP = yiPY (Y = yi) 
yi 
X 

= yiP({! | Y (!) = yi}) 
yi 
X 

= yiP({! | g(X(!)) = yi}). 
yi 

Similarly, 
Z 

X 

g dPX = yiPX ({x | g(x) = yi}). 
yi 
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However, from the definition of PX , we obtain 

PX ({x | g(x) = yi}) = PX (g 
−1(yi)) 

= P({! | X(!) ∈ g −1(yi)}) 

= P({! | g(X(!)) = yi}), 

and the equalities in the theorem follow, for simple functions. 

Let now g be nonnegative function, and let {gn} be an increasing sequence 

of nonnegative simple functions that converges to g. Note that gn(X) converges 

monotonically to g(X). We then have 

Z Z Z Z Z 

Y dP = g(X) dP = lim gn(X) dP = lim gn dPX = g dPX . 
n→∞ n→∞ 

(The second equality is the MCT; the third is the result that we already proved 

for simple functions; the last equality is once more the MCT.) 

The case of general (not just nonnegative) functions follows easily from the 

above – the details are omitted. This proves the theorem. 

2.3 The case of continuous random variables, described by PDFs 

We can now revisit the development of continuous random variables (Lecture 4), 

in a more rigorous manner. We say that a random variable X : → R is 

continuous if its CDF can be written in the form 
Z 

FX (x) = P(X ≤ x) = 1(−∞,x]f d�, ∀x ∈ R, 

where � is Lebesgue measure, and f is a nonnegative measurable function wint 
R 

fd� = 1. Recall that by Theorem 4 of Lecture 4 to each CDF there cor-
R 

responds a unique probability measure PX on (R, B). In this case PX has a 

particularly simple expression: 

Z 

PX (A) = f d� (8) 
A 

for any Borel set A. (Obviously, the CDF of PX is FX . The fact that (8) defines 

a valid measure is property 10 from Lecture 7.) 

When f is Riemann integrable and the set A = [a, b] is an interval, we 
R b 

can also write PX (A) = f(x) dx, where the latter integral is an ordinary 
a 

Riemann integral. 
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Theorem 2. For any measurable function g we have 

Z Z 

E[g(X)] = g dPX = (gf) d� 

R 

where all E and ’s exist or do not exist simultaneously. 

Note: Since integrals of non-negative functions always exist, this also gives 
R 

a convenient criterion: E[g(X)] is finite iff |g|fd� < ∞. 

Proof: The first equality was shown in Theorem 1. So, let us concentrate on the 

second. Following the usual program, let us first consider the case where g is 

a simple function, of the form g = 
Pk , for some measurable disjoint i=1 ai1Ai 

subsets Ai of the real line. We have 

Z k 
X 

g dPX = aiPX (Ai) 
i=1 

k Z 

X 

= ai f d� 
Ai i=1 

k Z 
X 

= ai1Ai f d� 
i=1 
Z k 

X 

= ai1Ai f d� 
i=1

Z 

= (gf) d�. 

The first equality is the definition of the integral for simple functions. The sec-

ond uses Eq. (8). The fourth uses linearity of integrals. The fifth uses the defini-

tion of g. 

Suppose now that g is a nonnegative function, and let {gn} be an increasing 

sequence of nonnegative functions that converges to g, pointwise. Since f is 

nonnegative, note that gnf also increases monotonically and converges to gf . 

Then, 
Z Z Z Z 

g dPX = lim gn dPX = lim (gnf) d� = (gf) d�. 
n→∞ n→∞ 

The first and the third equality above is the MCT. The middle equality is the 

result we already proved, for the case of a simple function gn. 
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Finally, if g is not nonnegative, the result is proved by considering separately 

the positive and negative parts of g. 

When g and f are “nice” functions, e.g., piecewise continuous, Theorem 2 

yields the familiar formula 

Z ∞

E[g(X)] = g(x)f(x) dx, 
−∞ 

where the integral is now an ordinary (improper) Riemann integral. 

FATOU’S LEMMA 

Note that for any two random variables, we have min{X, Y } ≤ X and min{X, Y } ≤ 
Y . Taking expectations, we obtain E[min{X, Y }] ≤ min{E[X], E[Y ]}. Fa-

tou’s lemma is in the same spirit, except that infinitely many random variables 

are involved, as well as a limiting operation, so some additional technical con-

ditions are needed. 

Theorem 3. Let fn ≥ 0 be measurable, then 
Z Z 

lim inf fndµ ≤ lim inf fndµ 
n→∞ n→∞ 

Proof: Fix some n. We have 

inf fk ≤ fm, ∀ m ≥ n. 
k≥n 

Integrating both sides, we obtain 

Z Z 

inf fk dµ ≤ fm dµ, ∀ m ≥ n. 
k≥n 

Taking the infimum of both sides with respect to m, we obtain 

Z Z 

inf fk dµ ≤ inf fm dµ (9) 
k≥n m≥n 

The statement of the Theorem follows from (9) after taking the limit limn→∞. 

Indeed, the sequence infk≥n fk is nonnegative and nondecreasing with n, and 

converges to lim infn→∞ fn. Therefore, from MCT we obtain 

Z Z Z 

lim inf fk dµ = lim inf fk , lim inf fn dµ 
n→∞ k≥n n→∞ k≥n n→∞ 
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Similarly, the limit as n → ∞ of the right-hand side of (9) converges to lim inf fndµ. 

Corollary 1. Let Y be a random variable that satisfies E[|Y |] < ∞. 

(a) If Y ≤ Xn, for all n, then E[lim infn→∞ Xn] ≤ lim infn→∞ E[Xn]. 

(b) If Xn ≤ Y , for all n, then E[lim sup ] ≥ lim sup ]. n→∞ Xn n→∞ E[Xn 

Proof: Apply Theorem 3 to Xn − Y or Y − Xn. 

DOMINATED CONVERGENCE THEOREM

The dominated convergence theorem complements the MCT by providing an 

alternative set of conditions under which a limit and an expectation can be inter-

changed. 

Theorem 4. (DCT) Consider a sequence of random variables {Xn} that 

converges to X a.e. Suppose that |Xn| ≤ Y , for all n, where Y is a non-

negative random variable that satisfies E[Y ] < ∞. Then, limn→∞ E[Xn] = 
E[X]. 

Proof: Let A ⊂ be the set of outcomes ! along which Xn(!) → X(!) 
as n → ∞. Then P(Ac) = 0. Let X̃ 

n(!) = Xn(!) for ! ∈ A and = 0 
˜ otherwise. Similarly, let X(!) = X(!), ! ∈ A and = 0 otherwise. Then 

E[X̃ 
n] = E[Xn], E[X̃ ] = E[X] and X̃ 

n → X̃ for all !. Thus we may assume, 

without the loss of generality that Xn(!) → X(!) for all !. 

Since −Y ≤ Xn ≤ Y , we can apply both parts of Fatou’s lemma , to obtain 

E[X] = E[lim inf Xn] ≤ lim inf E[Xn] ≤ lim sup E[Xn] ≤ E[lim sup Xn] = E[X]. 
n→∞ n→∞ n→∞ n→∞ 

This proves that 

E[X] = lim inf E[Xn] = lim sup E[Xn]. 
n→∞ n→∞ 

In particular, the limit limn→∞ E[Xn] exists and equals E[X]. 

Remark: We note that the DCT remains valid for general measures, not 

just for probability measures (the proof is the same). However, the follow-

ing statement (Bounded Convergence Theorem), is specific to probability mea-

sures: If there exists a constant c ∈ R such that |Xn| ≤ c, a.s., for all n, then 

limn E[Xn] = E[limn Xn]. 
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P∞ 
Corollary 2. Suppose that |] < ∞. Then, n=1 E[|Zn 

∞ ∞
h i 

X X 

E[Zn] = E Zn . 
n=1 n=1 

Pn 
Proof: By the monotone convergence theorem, applied to Yn = k=1 |Zk|, we 

have 
∞ ∞

h i 

X X 

E |Zn| = E[|Zn|] < ∞. 
n=1 n=1 

P P∞n 
Let Xn = Zi and note that limn→∞ Xn = Zn. We observe that i=1 i=1 

P∞ |Xn| ≤ i=1 |Zi|, which has finite expectation, as shown earlier. The result 

follows from the dominated convergence theorem. 

Exercise: Can you prove Corollary 1 directly from the monotonone convergence theo-

rem, without appealing to the DCT or Fatou’s lemma? 

Theorems such as MCT and DCT impose assumptions additional to the as-

sumption that Xn → X a.e. that insure that limn E[Xn] = E[X]. It should not 

be surprising that, in general just having Xn → X a.e. is not enough. Here is 

a counter-example. Let = [0, 1], let F be the Borel sigma-field B on [0, 1], 
and let P be the uniform (Lebesgue) probability measure. Let X(!) = 0 for all 

! ∈ [0, 1]. Let 

ˆ 

n, when ! ∈ (0, 1 ); 
n Xn(!) = 

0, when ! = 0 or ! ∈ ( 1 , 1]. 
n 

Verify that Xn(!) → 0 for all !, but E[Xn] = n(1/n) = 1 and thus E[Xn] → 0 
does not hold. 

The example above shows that DCT does not hold unless we make an ad-

ditional assumption, such as |Xn| ≤ Y for some random variable Y with 

E[Y ] < ∞. However, the sequence Xn is not increasing. 

Exercise: 

(a) Establish the following generalization of the MCT. Suppose Xn is a.e. increasing 

sequence of random variables, but suppose Xn are not necessarily non-negative. 

Let limn Xn = X a.e. Suppose Xn ≥ Y a.e. for some random variable Y . 
Finally, suppose the expectations of Xn, X and Y are all finite. Establish that 

limn E[Xn] = E[X ]. 

(b) Construct a sequence of random variables Xn which is increasing a.e., but E[Xn] 
does not converge to E[X ], where X = limn Xn a.e. 
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