Taste the Rainbow?

This morning I took out a little fun-size packet of Skittles, and found to my surprise that of the 16 skittles inside not a single one was green. (Skittles come in five flavors - green, yellow, orange, red, purple - and we're going to assume that each skittle is i.i.d. assigned one of these with uniform probability. Incidentally, this story is 100% true.)

This surprised me, so I wondered - what is the probability of getting such a packet, where some flavor is missing? (I assumed that all packets have 16 skittles.) Well, for any given flavor (say, green), the probability that a skittle is not that flavor is $4 / 5$, and there are 16 in a packet, so

$$
\mathbb{P}[\text { packet contains no green }]=(4 / 5)^{16}
$$

But I'm not interested in just "no green" - I want to know what the probability of missing any flavor is. This is upper-bounded by using the Union Bound over the 5 flavors, giving

$$
\mathbb{P}[\text { packet is missing a flavor }] \leq 5 \cdot(4 / 5)^{16}
$$

This is actually a fairly close bound, because it's only due to the possibility that two flavors might be missing which makes it a bound and not an equality. But missing two flavors is phenomenally unlikely - and from Problem 2 on the midterm we know that

$$
\mathbb{P}[\text { packet is missing a flavor }] \geq 5 \cdot(4 / 5)^{16}-\binom{5}{2}(3 / 5)^{16}
$$

We can then give both upper- and lower-bounds:

$$
0.14 \leq 5 \cdot(4 / 5)^{16}-\binom{5}{2}(3 / 5)^{16} \leq \mathbb{P}[\text { packet is missing a flavor }] \leq 5 \cdot(4 / 5)^{16} \approx 0.14
$$

This is really surprising! This means that if everything is uniform and independent, roughly one out of every seven packs is missing a flavor. Incidentally, the probability of there being a missing-flavor packet out of five random packets is

$$
\mathbb{P}[\text { at least one is missing a flavor }]=1-\mathbb{P}[\text { no packet is missing a flavor }] \geq 1-(0.86)^{5} \approx 0.53
$$

This means you have a slightly better than $1 / 2$ chance of getting such a pack in a group of five.
I feel like there's a fortune in bet winnings just waiting here.

Characteristic Functions

First things first - make sure you are comfortable with (a) complex numbers in general, and (b) especially with expressions of the form $e^{i t}$, notably the Euler formula

$$
e^{i t}=\cos (t)+i \sin (t) \quad \text { (note that this has L2-norm of } 1 \text {) }
$$

(and its extension $e^{i t+s}=e^{s}(\cos (t)+i \sin (t))$).

Limitations of the MGF, and how to get around them

The MGF is a very useful tool, but it has the notable limitation of sometimes not existing. For instance, consider the Cauchy distribution:

Definition 0.1. The Cauchy distribution of location μ and scale γ is the continuous distribution on \mathbb{R} with PDF

$$
f_{X}(x)=\frac{1}{\pi \gamma\left(1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right)}
$$

This happens to have CDF of the form

$$
F_{X}(x)=\frac{1}{\pi} \arctan \left(\frac{x-x_{0}}{\gamma}\right)+\frac{1}{2}
$$

This is often called pathological because its expectation is not defined. Furthermore, the MGF is defined nowhere (except at $s=0$) - we can show this by simply attempting to compute

$$
M_{X}(s)=\mathbb{E}\left[e^{s X}\right]=\int_{-\infty}^{\infty} e^{s x} f_{X}(x) d x=\int_{-\infty}^{\infty} e^{s x} \frac{1}{\pi \gamma\left(1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right)} d x
$$

For any $s \neq 0$, we have the following for sufficiently big positive x or big negative x :

$$
e^{s x}>\pi \gamma\left(1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right)
$$

This immediately implies that the integral is infinite because it is >1 on infinitely large measure.
So if we can't use the MGF on Cauchy, what can we do? Use $e^{i t X}$ instead of $e^{s X}-$ the expression $e^{i t X}$ is always of L2-norm 1 because it X has no real part. We therefore define:

Definition 0.2. The characteristic function of a real-valued random variable X is a function $\phi_{X}: \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
\phi_{X}(t):=\mathbb{E}\left[e^{i t}\right]
$$

Because it has L2-norm of 1 everywhere, both the real and imaginary components of $e^{i t X}$ are absolutely bounded by 1 - and therefore by the Bounded Convergence Theorem, the expectation exists and is finite. Even more, we know that $\phi_{X}(t)$ is always within the unit circle around 0 in the complex plane.

Why is the characteristic function useful?

If you've seen Fourier analysis, you might recognize the characteristic function as being super similar to the Fourier transform (but without the -2π constant term in the exponent). Furthermore, we'll use without proof here the following facts (Yury will probably cover them sometime):

Proposition 0.1. X, Y have the same distribution $\Longleftrightarrow \phi_{X}=\phi_{Y}$ everywhere.
(Note: it is possible for the characteristic functions of different random variables to agree on an interval containing 0 , but somehow disagree elsewhere. However, I don't know any examples and they won't be discussed here.)

Theorem 0.1 (Levy's Continuity Theorem). If X_{1}, X_{2}, \ldots and X are random variables, and $\phi_{X_{n}} \rightarrow \phi_{X}$ (pointwise) everywhere, then $X_{1}, X_{2}, \cdots \rightarrow X$ in distribution.

This makes it a very powerful tool for this sort of thing.
We'll also use the following, which can be proved in the same manner as for MGFs:
Proposition 0.2. The characteristic function satisfies the following properties:

- If a, b are real numbers, $\phi_{a X+b}(t)=e^{i t b} \phi_{X}(a t)$.
- If X, Y are independent random variables, $\phi_{X+Y}(t)=\phi_{X}(t) \phi_{Y}(t)$.

Proof. For the first, we just write

$$
\phi_{a X+b}(t)=\mathbb{E}\left[e^{i t(a X+b)}\right]=\mathbb{E}\left[e^{i t b} e^{i t(a X)}\right]=e^{i t b} \mathbb{E}\left[e^{i(a t) X}\right]=e^{i t b} \phi_{X}(a t)
$$

For the second, we use the fact that X, Y independent $\Longrightarrow e^{i t X}, e^{i t Y}$ independent. Then:

$$
\phi_{X+Y}(t)=\mathbb{E}\left[e^{i t(X+Y}\right]=\mathbb{E}\left[e^{i t X} e^{i t Y}\right]=\mathbb{E}\left[e^{i t X}\right] \mathbb{E}\left[e^{i t Y}\right]=\phi_{X}(t) \phi_{Y}(t)
$$

concluding the proof.

Some quick problems using the CF

Problem 0.1. Prove that the sum of two Cauchy's is also Cauchy.
The CF of the Cauchy distribution $f_{X}(x)=\frac{1}{\pi \gamma\left(1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right)}$ happens to be $\phi_{X}(t)=e^{i t x_{0}-\gamma|t|}$. This is quite difficult to actually compute without complex analysis tools, but we'll use it. The rest is simple: let X, Y have parameters x_{0}, γ_{X} and y_{0}, γ_{Y}. Then

$$
\phi_{X+Y}(t)=\phi_{X}(t) \phi_{Y}(t)=e^{i t x_{0}-\gamma_{X}|t|} e^{i t y_{0}-\gamma_{Y}|t|}=e^{i t\left(x_{0}+y_{0}\right)-\left(\gamma_{X}+\gamma_{Y}\right)|t|}
$$

which is also the CF of a Cauchy (with parameters $x_{0}+y_{0}$ and $\gamma_{X}+\gamma_{Y}$).

Problem 0.2. Use characteristic functions to show that average of n i.i.d. $\operatorname{Ber}(p)$ converges to a constant (equal to the probability p) as $n \rightarrow \infty$.

We consider $X_{k} \sim \operatorname{Ber}(p)$ (i.i.d.), and $S_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}$. The CF of X_{k} is

$$
\phi_{X_{k}}(t)=\mathbb{E}\left[e^{i t X_{k}}\right]=(1-p)+p e^{i t}
$$

Furthermore, adding independent random variables multiplies CFs (same as MGFs), giving

$$
\phi_{S_{n}}(t)=\phi_{\sum_{k=1}^{n} X_{k}}(t / n)=\left((1-p)+p e^{i t / n}\right)^{n}=\left(1+p\left(e^{i t / n}-1\right)\right)^{n}
$$

Note that as $n \rightarrow \infty$, we have $i t / n \rightarrow 0$ - so we'll take the first-order Taylor expansion at 0 :

$$
e^{i t / n}=1+i t / n+O\left(n^{-2}\right) \Longrightarrow\left(e^{i t / n}-1\right)=i t / n+O\left(n^{-2}\right)
$$

(Why the first-order? Because the $O\left(n^{-2}\right)$ term is too small to affect the result in the limit, even with the outer power-of-n.) This gives

$$
\lim _{n \rightarrow \infty}\left(1+p\left(e^{i t / n}-1\right)\right)^{n}=\lim _{n \rightarrow \infty}(1+(i t p) / n)^{n}=e^{i t p}
$$

But we can easily recognize that $e^{i t p}$ is just the CF of the distribution which returns p with probability 1. Therefore, the S_{n} 's converge (in distribution) to that distribution.

Problem-solving about the MGF

Problem 0.3. Suppose that we know that

$$
\limsup _{x \rightarrow \infty} \frac{\log (\mathbb{P}[X>x])}{x}=-t<0
$$

We want to show that the MGF $M_{X}(s)<\infty$ for all $s \in[0, t)$.
Note that $e^{s X}$ is actually nonnegative. This is very useful because we can now use that nice little formula of computing the expectation of a nonnegative variable using $\mathbb{P}[X>x]$:

$$
\mathbb{E}\left[e^{s X}\right]=\int_{0}^{\infty} \mathbb{P}\left[e^{s X}>y\right] d y
$$

This is good, so far, but we really want $\mathbb{P}[X>x]$ - so we'll rewrite $y=e^{s x}$. Note that because $e^{s x}$ is (strictly) monotonically increasing, $e^{s X}>e^{s x} \Longleftrightarrow X>x$. The transformation takes y on $(0, \infty)$ to x on $(-\infty, \infty)$, and $d y=s e^{s x} d x$, giving

$$
\mathbb{E}\left[e^{s X}\right]=s \int_{-\infty}^{\infty} e^{s x} \mathbb{P}[X>x] d x
$$

Note the intuition here (warning - not rigorous!):

$$
\begin{aligned}
\frac{\log (\mathbb{P}[X>x])}{x} \leq-t & \Longrightarrow \mathbb{P}[X>t] \leq e^{-t x} \\
& \Longrightarrow s \int_{-\infty}^{\infty} e^{s x} \mathbb{P}[X>x] d x \leq s+s \int_{0}^{\infty} e^{(s-t) x} d x<\infty
\end{aligned}
$$

(taking advantage of the fact that for $x \leq 0$, we have $e^{s x} \mathbb{P}[X>x] \leq 1$).
How do we make this rigorous? Use an ε.

$$
\limsup _{x \rightarrow \infty} \frac{\log (\mathbb{P}[X>x])}{x}=-t
$$

really means that for all $\varepsilon>0$, we have some x_{ε} such that

$$
\frac{\log (\mathbb{P}[X>x])}{x} \leq-t+\varepsilon \quad \text { for all } x>x_{\varepsilon}
$$

This condition is equivalent to $\mathbb{P}[X>x] \leq e^{(-t+\varepsilon) x}$ for all $x>x_{\varepsilon}$. Now let us fix $s \in[0, t)$ and $\varepsilon<t-s$. Now we split the integral:

$$
\mathbb{E}\left[e^{s X}\right]=s \int_{-\infty}^{\infty} e^{s x} \mathbb{P}[X>x] d x=s \int_{-\infty}^{x_{\varepsilon}} e^{s x} \mathbb{P}[X>x] d x+s \int_{x_{\varepsilon}}^{\infty} e^{s x} \mathbb{P}[X>x] d x
$$

The integral on the left is finite, as it decays exponentially going to $-\infty$ and is bounded above by $e^{s x_{\varepsilon}}$. The integral on the right is then upper-bounded by our result for $\mathbb{P}[X>x]$, yielding in total (for some constant C)

$$
\mathbb{E}\left[e^{s X}\right] \leq C+s \int_{x_{\varepsilon}}^{\infty} e^{(s-t+\varepsilon) x} d x<\infty
$$

because, of course, we chose $\varepsilon>0$ such that $s-t+\varepsilon<0$.

Multivariate normal - conditional expectation

Problem 0.4. Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are i.i.d. $\sim \mathcal{N}(0,1)$; let X_{1}, \ldots, X_{n} be linear combinations of these

$$
X_{j}=\sum_{r=1}^{n} C_{j, r} Y_{r} \text { for some constants } C_{j, r}
$$

What is the conditional expectation $\mathbb{E}\left[X_{j} \mid X_{k}\right]$?
Note that all the normals discussed here have expectation 0 , which simplifies things. We have the formula (Theorem 1 in Lecture 14 notes)

$$
\mathbb{E}\left[X_{j} \mid X_{k}\right]=\mu_{X_{j}}+V_{X_{j} X_{k}} V_{X_{k} X_{k}}^{-1}\left(X_{k}-\mu_{X_{k}}\right)=V_{X_{j} X_{k}} V_{X_{k} X_{k}}^{-1} X_{k}
$$

where $V_{Z_{1} Z_{2}}=\operatorname{Cov}\left(Z_{1}, Z_{2}\right)$. The zero means also make the covariance calculations simpler:

$$
V_{X_{j} X_{k}}=\mathbb{E}\left[X_{j} X_{k}\right] \quad \text { and } \quad V_{X_{k} X_{k}}=\mathbb{E}\left[X_{k} X_{k}\right]
$$

Note that if we have $Y_{i_{1}}, Y_{i_{2}}\left(\right.$ for $\left.i_{1} \neq i_{2}\right)$ which are therefore independent, we get

$$
\mathbb{E}\left[Y_{i_{1}} Y_{i_{2}}\right]=\mathbb{E}\left[Y_{i_{1}}\right] \mathbb{E}\left[Y_{i_{2}}\right]=0 \quad \text { and } \quad \mathbb{E}\left[Y_{i} Y_{i}\right]=\operatorname{Var}\left(Y_{i}\right)=1
$$

(by definition since $Y_{i} \sim \mathcal{N}(0,1)$).
Now we note the following, and use linearity of expectation:

$$
\mathbb{E}\left[X_{j} X_{k}\right]=\mathbb{E}\left[\sum_{r, s} C_{j, r} C_{k, s} Y_{r} Y_{s}\right]=\sum_{r, s} C_{j, r} C_{k, s} \mathbb{E}\left[Y_{r} Y_{s}\right]=\sum_{r} C_{j, r} C_{k, r}
$$

Note that the above holds also if $j=k$. Therefore,

$$
V_{X_{j} X_{k}}=\sum_{r} C_{j, r} C_{k, r} \quad \text { and } \quad V_{X_{k} X_{k}}=\sum_{r} C_{k, r}^{2}
$$

Plugging back in, we get

$$
\mathbb{E}\left[X_{j} \mid X_{k}\right]=V_{X_{j} X_{k}} V_{X_{k} X_{k}}^{-1} X_{k}=\left(\frac{\sum_{r} C_{j, r} C_{k, r}}{\sum_{r} C_{k, r}^{2}}\right) X_{k}
$$

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

