MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J Problem Set 1

Readings:

(a) Notes from Lecture 1.

(b) Handout on background material on sets and real analysis (Recitation 1).

Supplementary readings:

[C], Sections 1.1-1.4.[GS], Sections 1.1-1.3.[W], Sections 1.0-1.5, 1.9.

Exercise 1.

- (a) Let \mathbb{N} be the set of positive integers. A function $f : \mathbb{N} \to \{0, 1\}$ is said to be *periodic* if there exists some N such that f(n + N) = f(n), for all $n \in \mathbb{N}$. Show that the set of periodic functions is countable.
- (b) Does the result from part (a) remain valid if we consider rational-valued periodic functions $f : \mathbb{N} \to \mathbb{Q}$?

Exercise 2. Let $\{x_n\}$ and $\{y_n\}$ be real sequences that converge to x and y, respectively. Provide a formal proof of the fact that $x_n + y_n$ converges to x + y.

Exercise 3. We are given a function $f : A \times B \to \mathbb{R}$, where A and B are nonempty sets.

(a) Assuming that the sets A and B are finite, show that

$$\max_{x \in A} \min_{y \in B} f(x, y) \le \min_{y \in B} \max_{x \in A} f(x, y).$$

(b) For general nonempty sets (not necessarily finite), show that

$$\sup_{x \in A} \inf_{y \in B} f(x, y) \le \inf_{y \in B} \sup_{x \in A} f(x, y).$$

1

Exercise 4. A probabilistic experiment involves an infinite sequence of trials. For k = 1, 2, ..., let A_k be the event that the kth trial was a success. Write down a set-theoretic expression that describes the following event:

B: For every k there exists an ℓ such that trials $k\ell$ and $k\ell^2$ were both successes.

Note: A "set theoretic expression" is an expression like $\bigcup_{k>5} \bigcap_{\ell < k} A_{k+\ell}$.

Exercise 5. Let $f_n, f, g : [0,1] \rightarrow [0,1]$ and $a, b, c, d \in [0,1]$. Derive the following set theoretic expressions:

(a) Show that

$$\{x \in [0,1] \mid \sup_{n} f_n(x) \le a\} = \bigcap_{n} \{x \in [0,1] \mid f_n(x) \le a\},\$$

and use this to express $\{x \in [0,1] \mid \sup_n f_n(x) < a\}$ as a countable combination (countable unions, countable intersections and complements) of sets of the form $\{x \in [0,1] \mid f_n(x) \le b\}$.

- (b) Express {x ∈ [0,1] | f(x) > g(x)} as a countable combination of sets of the form {x ∈ [0,1] | f(x) > c} and {x ∈ [0,1] | g(x) < d}.
- (c) Express {x ∈ [0,1] | lim sup_n f_n(x) ≤ c} as a countable combination of sets of the form {x ∈ [0,1] | f_n(x) ≤ c}.
- (d) Express $\{x \in [0,1] \mid \lim_n f_n(x) \text{ exists}\}$ as a countable combination of sets of the form $\{x \in [0,1] \mid f_n(x) < c\}, \{x \in [0,1] \mid f_n(x) > c\}$, etc. (Hint: think of $\{x \in [0,1] \mid \limsup_n f_n(x) > \liminf_n f_n(x)\}$).

Exercise 6. Optional — not to be graded.

This exercise develops an example that is meant to illustrate the following: if we work with fields instead of σ -fields, and if we only require finite additivity, then countable additivity will not be an automatic consequence, and the model may not correspond to any intuitive notion of probabilities.

Let $= \mathbb{N}$ (the positive integers), and let \mathcal{F}_0 be the collection of subsets of that either have finite cardinality or their complement has finite cardinality. For any $A \in \mathcal{F}_0$, let $\mathbb{P}(A) = 0$ if A is finite, and $\mathbb{P}(A) = 1$ if A^C is finite.

- (a) Show that \mathcal{F}_0 is a field but not a σ -field.
- (b) Show that P is finitely additive on F₀; that is, if A, B ∈ F₀, and A, B are disjoint, then P(A ∪ B) = P(A) + P(B).

- (c) Show that P is not countably additive on F₀; that is, construct a sequence of disjoint sets A_i ∈ F₀ such that ∪[∞]_{i=1}A_i ∈ F₀ and P (∪[∞]_{i=1}A_i) ≠ ∑[∞]_{i=1} P (A_i).
- (d) Construct a decreasing sequence of sets A_i ∈ F₀ such that ∩[∞]_{i=1}A_i = Ø for which lim_{i→∞} P(A_i) ≠ 0.

3

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>