MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Readings:

(a) Notes from Lecture 1.
(b) Handout on background material on sets and real analysis (Recitation 1).

Supplementary readings:

[C], Sections 1.1-1.4.
[GS], Sections 1.1-1.3.
[W], Sections 1.0-1.5, 1.9.

Exercise 1.

(a) Let \mathbb{N} be the set of positive integers. A function $f: \mathbb{N} \rightarrow\{0,1\}$ is said to be periodic if there exists some N such that $f(n+N)=f(n)$, for all $n \in \mathbb{N}$. Show that the set of periodic functions is countable.
(b) Does the result from part (a) remain valid if we consider rational-valued periodic functions $f: \mathbb{N} \rightarrow \mathbb{Q}$?

Exercise 2. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be real sequences that converge to x and y, respectively. Provide a formal proof of the fact that $x_{n}+y_{n}$ converges to $x+y$.

Exercise 3. We are given a function $f: A \times B \rightarrow \mathbb{R}$, where A and B are nonempty sets.
(a) Assuming that the sets A and B are finite, show that

$$
\max _{x \in A} \min _{y \in B} f(x, y) \leq \min _{y \in B} \max _{x \in A} f(x, y) .
$$

(b) For general nonempty sets (not necessarily finite), show that

$$
\sup _{x \in A} \inf _{y \in B} f(x, y) \leq \inf _{y \in B} \sup _{x \in A} f(x, y) .
$$

Exercise 4. A probabilistic experiment involves an infinite sequence of trials. For $k=1,2, \ldots$, let A_{k} be the event that the k th trial was a success. Write down a set-theoretic expression that describes the following event:
B : For every k there exists an ℓ such that trials $k \ell$ and $k \ell^{2}$ were both successes.

Note: A "set theoretic expression" is an expression like $\bigcup_{k>5} \bigcap_{\ell<k} A_{k+\ell}$.

Exercise 5. Let $f_{n}, f, g:[0,1] \rightarrow[0,1]$ and $a, b, c, d \in[0,1]$. Derive the following set theoretic expressions:
(a) Show that

$$
\left\{x \in[0,1] \mid \sup _{n} f_{n}(x) \leq a\right\}=\bigcap_{n}\left\{x \in[0,1] \mid f_{n}(x) \leq a\right\}
$$

and use this to express $\left\{x \in[0,1] \mid \sup _{n} f_{n}(x)<a\right\}$ as a countable combination (countable unions, countable intersections and complements) of sets of the form $\left\{x \in[0,1] \mid f_{n}(x) \leq b\right\}$.
(b) Express $\{x \in[0,1] \mid f(x)>g(x)\}$ as a countable combination of sets of the form $\{x \in[0,1] \mid f(x)>c\}$ and $\{x \in[0,1] \mid g(x)<d\}$.
(c) Express $\left\{x \in[0,1] \mid \limsup \sin _{n} f_{n}(x) \leq c\right\}$ as a countable combination of sets of the form $\left\{x \in[0,1] \mid f_{n}(x) \leq c\right\}$.
(d) Express $\left\{x \in[0,1] \mid \lim _{n} f_{n}(x)\right.$ exists $\}$ as a countable combination of sets of the form $\left\{x \in[0,1] \mid f_{n}(x)<c\right\},\left\{x \in[0,1] \mid f_{n}(x)>c\right\}$, etc. (Hint: think of $\left.\left\{x \in[0,1] \mid \limsup \sup _{n}(x)>\liminf _{n} f_{n}(x)\right\}\right)$.

Exercise 6. Optional - not to be graded.

This exercise develops an example that is meant to illustrate the following: if we work with fields instead of σ-fields, and if we only require finite additivity, then countable additivity will not be an automatic consequence, and the model may not correspond to any intuitive notion of probabilities.

Let $\quad=\mathbb{N}$ (the positive integers), and let \mathcal{F}_{0} be the collection of subsets of that either have finite cardinality or their complement has finite cardinality. For any $A \in \mathcal{F}_{0}$, let $\mathbb{P}(A)=0$ if A is finite, and $\mathbb{P}(A)=1$ if A^{C} is finite.
(a) Show that \mathcal{F}_{0} is a field but not a σ-field.
(b) Show that \mathbb{P} is finitely additive on \mathcal{F}_{0}; that is, if $A, B \in \mathcal{F}_{0}$, and A, B are disjoint, then $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$.
(c) Show that \mathbb{P} is not countably additive on \mathcal{F}_{0}; that is, construct a sequence of disjoint sets $A_{i} \in \mathcal{F}_{0}$ such that $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}_{0}$ and $\mathbb{P}\left(\cup_{i=1}^{\infty} A_{i}\right) \neq \sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)$.
(d) Construct a decreasing sequence of sets $A_{i} \in \mathcal{F}_{0}$ such that $\cap_{i=1}^{\infty} A_{i}=\emptyset$ for which $\lim _{i \rightarrow \infty} \mathbb{P}\left(A_{i}\right) \neq 0$.

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

