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THE BASICS OF STOCHASTIC PROCESSES 
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We now turn to the study of some simple classes of stochastic processes. Exam-

ples and a more leisurely discussion of this material can be found in the corre-

sponding chapter of [BT]. 

A discrete-time stochastic is a sequence of random variables {Xn} defined 

on a common probability space ( , F , P). In more detail, a stochastic process is 

a function X of two variables n and ω. For every n, the function ω 7→ Xn(ω) is a 

random variable (a measurable function). An alternative perspective is provided 

by fixing some ω ∈ and viewing Xn(ω) as a function of n (a “time function,” 

or “sample path,” or “trajectory”). 

A continuous-time stochastic process is defined similarly, as a collection of 

random variables {Xt} defined on a common probability space ( , F , P), where 

t varies over non-negative real values R+. 

1 SPACES OF TRAJECTORIES: R∞ and R[0,∞) 

1.1 σ-algebras on spaces of trajectories 

Recall that earlier we defined the Borel σ-algebra Bn on Rn as the smallest σ 
algebra containing all measurable rectangles, i.e. events of the form 

B1 × · · · × Bn = {x ∈ Rn : xj ∈ Bj ∀j ∈ [n]} 

where Bj are (1-dimensional) Borel subsets of R. A generalization is the fol-

lowing: 
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Definition 1. Let T be an arbitrary set of indices. The product space RT is 

defined as 
Y 

RT , R = {(xt, t ∈ T )} . 
t∈T 

A subset JS(B) of RT is called a cylinder with base B on time indices S = 
{s1, . . . , sn} if 

JS(B) = {(xt) : (xs1 , . . . , xsn ) ∈ B} , B ⊂ Rn , (1) 

with B ∈ Bn . The product σ-algebra BT is the smallest σ-algebra containing 

all cylinders: 

BT = σ{JS(B) : ∀S-finite and B ∈ BS} . 

For the special case T = {1, 2, . . . , } the notation R∞ and B∞ will be used. 

The following are measurable subsets of R∞: 

E0 = {x ∈ R∞ : xn–converges} 

The following are measurable subsets of R[0,∞): 

= {x ∈ R[0,∞) E1 : xt = 0 ∀t ∈ Q} (2) 

= {x ∈ R[0,∞) E2 : sup xt > 0} (3) 
t∈Q 

The following are not measurable subsets of R[0,∞): 

= {x ∈ R[0,∞) E ′ : xt = 0 ∀t} (4) 1 

= {x ∈ R[0,∞) E ′ : sup xt > 0} (5) 2 
t 

= {x ∈ R[0,∞) E3 : xt–continuous} (6) 

Non-measurability of E1 
′ and E2 

′ will follow from the next result. We mention 

that since E1 ∩ E3 = E1 
′ ∩ E3, then by considering a trace of B[0,+∞) on E3 

sets E1 
′ and E2 

′ can be made measurable. This is a typical approach taken in the 

theory of continuous stochastic processes. 

Proposition 1. The following provides information about BT : 

(i) For every measurable set E ∈ BT there exists a countable set of time 

indices S = {s1, . . .} and a subset B ∈ B∞ such that 

E = {(xt) : (xs1 , . . . , xsn , . . .) ∈ B} (7) 
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(ii) Every measurable set E ∈ BT can be approximated within arbitrary ǫ by 

a cylinder: 

P[E△JS(B)] ≤ ǫ ,

where P is any probability measure on (RT , BT ). 

(iii) If {Xt, t ∈ T } is a collection of random variables on ( , F), then the map 

X : → RT , (8) 

ω 7→ (Xt(ω), t ∈ T ) (9) 

is measurable with respect to BT . 

Proof: For (i) simply notice that collection of sets of the form (7) contains 

all cylinders and closed under countable unions/intersections. To see this simply 

notice that one can without loss of generality assume that every set in, for ex-
S 

ample, union F = En correspond to the same set of indices in (7) (otherwise 

extend the index sets S first). 

(ii) follows from the next exercise and the fact that {JS(B), B ∈ BS} (under 

fixed finite S) form a σ-algebra. For (iii) note that it is sufficient to check that 

X−1(JS(B)) ∈ F (since cylinders generate BT ). The latter follows at once 

from the definition of a cylinder (1) and the fact that 

{(Xs1 , . . . ,Xsn ) ∈ B} 

are clearly in F . 
W 

Exercise 1. Let F , α ∈ S be a collection of σ-algebras and let F = F be the 
2S 

W 

smallest σ-algebra containing all of them. Call set B finitary if B ∈ 
2S1 

F , where 

S1 is a finite subset of S. Prove that every E ∈ F is finitary approximable, i.e. that for 

every ǫ > 0 there exists a finitary B such that 

P[E△B] ≤ ǫ . 

(Hint: Let L = {E : E–finitary approximable} and show that L contains the algebra of 

finitary sets and closed under monotone limits.) 

With these preparations we are ready to give a definition of stochastic pro-

cess: 

Definition 2. Let ( , F , P) be a probability space. A stochastic process with 

time set T is a measurable map X : ( , F) → (RT , BT ). The pushforward 

PX , P ◦ X−1 is called the law of X. 
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1.2 Probability measures on spaces of trajectories 

According to Proposition 1 we may define probability measures on RT by sim-

ply computing an induced measure along a map (9). An alternative way to define 

probabilities on RT is via the following construction. 

Theorem 1 (Kolmogorov). Suppose that for any finite S ⊂ T we have 

a probability measure PS on RS and that these measures are consistent. 

Namely, if S ′ ⊂ S then 

PS′ [B] = PS[B × RS\S ′ ] . 

Then there exists a unique probability measure P on RT such that 

P[JS(B)] = PS [B] 

for every cylinder JS(B). 

Proof (optional): As a simple exercise, reader is encouraged to show that 

it suffices to consider the case of countable T (cf. Proposition 1.(i)). We thus 
S 

focus on constructing a measure on R∞ . Let A = Fn, where Fn is the n≥1 
σ-algebra of all cylinders with time indices {1, . . . , n}. Clearly A is an algebra. 

Define a set-function on A via: 

∀E = {(x1, . . . , xn) ∈ B} : P[E] , P{1,...,n}[B] . 

Consistency conditions guarantee that this assignment is well-defined and results 

in a finitely additive set-function. We need to verify countable additivity. Let 

En ց Ø (10) 

By repeating the sets as needed, we may assume En ∈ Fn. If we can show that 

P[En] ց 0 (11) 

then Caratheodory’s extension theorem guarantees that P extends uniquely to 

σ(A) = B∞ . 

We will use the following facts about Rn: 

1. Every finite measure µ on (Rn , Bn) is inner regular, namely for every 

E ∈ Bn 

µ[E] = sup µ[K] , (12) 
K⊂E 

supremum over all compact subsets of E. 

4 



2. Every decreasing sequence of non-empty compact sets has non-empty in-

tersection: 

Kn =6 Ø,Kn ց K ⇒ K 6= Ø (13) 

3. If f : Rn → Rk is continuous, then f (K) is compact for every compact 

K. 

Then according to (12) for every En and every ǫ > 0 there exists a compact 
′ subset K ⊂ Rn such that such that n 

′ P[En \ J1,...,n(K )] ≤ ǫ2−n . n 

Then, define by induction 

′ Kn = K ∩ (Kn−1 × R) . n 

(Note that Kn−1 ⊂ Rn−1 and the set Kn−1 × R is simply an extension of Kn−1 
into Rn by allowing arbitrary last coordinates.) Since En ⊂ En−1 we have 

P[En \ J1,...,n(Kn)] ≤ ǫ2−n + P[En−1 \ J1,...,n−1(Kn−1)] . 

Thus, continuing by induction we have shown that 

P[En \ J1,...,n(Kn)] ≤ ǫ(2−1 + · · · 2−n) < ǫ (14) 

We will show next that Kn = Ø for all n large enough. Since by construction 

En ⊃ J1,...,n(Kn) (15) 

we then have from (14) and Kn = Ø that 

lim sup P[En] < ǫ . 
n→∞ 

By taking ǫ to 0 we have shown (11) and the Theorem. 

It thus remains to show that Kn = Ø for all large enough n. Suppose 

otherwise, then by construction we have 

Kn ⊂ Kn−1 × R ⊂ Kn−2 × R2 ⊂ · · · ⊂ K1 × Rn−1 . 

Thus by projecting each Kn onto first coordinate we get a decreasing sequence 

of non-empty compacts, which by (13) has non-empty intersection. Then we 

can pick a point x1 ∈ R such that 

x1 ∈ Projn→1(Kn) ∀n . 
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Repeating the same argument but projecting onto first two coordinates, we can 

now pick x2 ∈ R such that 

(x1, x2) ∈ Projn→2(Kn) ∀n . 

By continuing in this fashion we will have constructed the sequence 

(x1, x2, . . .) ∈ J1,...,n(Kn) ∀n . 

By (15) then we have 
\ 

(x1, x2, . . .) ∈ En 

n≥1

which contradicts (10). Thus, one of Kn must be empty. 

1.3 Tail σ-algebra and Kolmogorov’s 0/1 law 

Definition 3. Consider (R∞ , B∞) and let F∞ be a sub-σ-algebra generated by n 

all cylinders Js1,...,sk (B) with sj ≥ n. Then the σ-algebra 

\ 

F∞T , n 

n>0 

is called a tail σ-algebra on R∞ . If X : → R∞ is a stochastic process, then 

σ-algebra X−1T is called a tail σ-algebra of X. 

Examples of tail events: 

E1 = {sequence Xn converges} (16) 
X 

E2 = {series Xn converges} (17) 

E3 = {lim sup Xn > 0} , (18) 
n→∞ 

An example of the event which is not a tail event: 

n 
X 

E4 = {lim sup Xk > 0} 
n→∞ 

k=1

Theorem 2 (Kolmogorov’s 0/1 law). If Xj , j = 1, . . . are independent then 

any event in the tail σ-algebra of X has probability 0 or 1. 
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Proof: Let PX be the law of X (so that PX is a measure on (R∞ , B∞)). 
Take E ∈ T , then E ∈ F∞ for every n. Thus under PX event E is independent n 

of every cylinder: 

PX [E ∩ Js1,...,sk (B)] = PX [E]PX [Js1,...,sk (B)] (19) 

On the other hand, by Proposition 1 every element of B∞ can be arbitrarily 

well approximated with cylinders. Taking a sequence of such approximations 

converging to E in (19) we derive that E must be independent of itself: 

PX [E ∩ E] = PX [E]PX [E] , 

implying PX [E] = 0 or 1. 

2 THE BERNOULLI PROCESS 

In the Bernoulli process, the random variables Xn are i.i.d. Bernoulli, with com-

mon parameter p ∈ (0, 1). The natural sample space in this case is = {0, 1}∞ . 

Let Sn = X1 +· · ·+Xn (the number of “successes” or “arrivals” in n steps). 

The random variable Sn is binomial, with parameters n and p, so that 

� � 

n 
pSn (k) = p k(1 − p)n−k , k = 0, 1 . . . , n, 

k 

E[Sn] = np, var(Sn) = np(1 − p). 

Let T1 be the time of the first success. Formally, T1 = min{n | Xn = 1}. 

We already know that T1 is geometric: 

pT1 (k) = (1 − p)k−1 p, k = 1, 2, . . . ; E[T1] = 
1 
. 

p 

2.1 Stationarity and memorylessness 

The Bernoulli process has a very special structure. The discussion below is 

meant to capture some of its special properties in an abstract manner. 

Consider a Bernoulli process {Xn}. Fix a particular positive integer m, and 

let Yn = Xm+n. Then, {Yn} is the process seen by an observer who starts 

watching the process {Xn} at time m + 1, as opposed to time 1. Clearly, the 

process {Yn} also involves a sequence of i.i.d. Bernoulli trials, with the same pa-

rameter p. Hence, it is also a Bernoulli process, and has the same distribution as 

the process {Xn}. More precisely, for every k, the distribution of (Y1, . . . , Yk) 
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is the same as the distribution of (X1, . . . ,Xk). This property is called station-

arity property. 

In fact a stronger property holds. Namely, even if we are given the values 

of X1, . . . ,Xm, the distribution of the process {Yn} does not change. Formally, 

for any measurable set A ⊂ , we have 

P((Xn+1,Xn+2, . . .) ∈ A | X1, . . . ,Xn) = P((Xn+1,Xn+2, . . .) ∈ A) 
= P((X1,X2 . . . , . . .) ∈ A). 

We refer to the first equality as a memorylessness property. (The second in-

equality above is just a restatement of the stationarity property.) 

2.2 Stopping times 

We just discussed a situation where we start “watching” the process at some time 

m +1, where m is an integer constant. We next consider the case where we start 

watching the process at some random time N + 1. So, let N be a nonnegative 

integer random variable. Is the process {Yn} defined by Yn = XN+n a Bernoulli 

process with the same parameter? In general, this is not the case. For example, 

if N = min{n | Xn+1 = 1}, then P(Y1 = 1) = P(XN+1 = 1) = 1 6= p. This 

inequality is due to the fact that we chose the special time N by “looking into 

the future” of the process; that was determined by the future value Xn+1. 

This motivates us to consider random variables N that are determined causally, 

by looking only into the past and present of the process. Formally, a nonneg-

ative random variable N is called a stopping time if, for every n, the occur-

rence or not of the event {N = n} is completely determined by the values of 

X1, . . . ,Xn. Even more formally, for every n, there exists a function hn such 

that 

I{N=n} = hn(X1, . . . ,Xn). 

We are now a position to state a stronger version of the memorylessness 

property. If N is a stopping time, then for all n, we have 

P((XN+1,XN+2, . . .) ∈ A | N = n, X1, . . . ,Xn) = P((Xn+1,Xn+2, . . .) ∈ A) 
= P((X1,X2 . . . , . . .) ∈ A). 

In words, the process seen if we start watching right after a stopping time is also 

Bernoulli with the same parameter p. 
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2.3 Arrival and interarrival times 

For k ≥ 1, let Yk be the kth arrival time. Formally, Yk = min{n | Sn = k}. 

For convenience, we define Y0 = 0. The kth interarrival time is defined as 

Tk = Yk − Yk−1. 

We already mentioned that T1 is geometric. Note that T1 is a stopping time, 

so the process (XT1+1,XT1+2, . . .) is also a Bernoulli process. Note that the 

second interarrival time T2, in the original process is the first arrival time in 

this new process. This shows that T2 is also geometric. Furthermore, the new 

process is independent from (X1, . . . ,XT1 ). Thus, T2 (a function of the new 

process) is independent from (X1, . . . ,XT1 ). In particular, T2 is independent 

from T1. 

By repeating the above argument, we see that the interarrival times Tk are 

i.i.d. geometric. As a consequence, Yk is the sum of k i.i.d. geometric random 

variables, and its PMF can be found by repeated convolution. In fact, a simpler 

derivation is possible. We have 

P(Yk = t) = P(St−1 = k − 1 and Xt = 1) = P(St−1 = k − 1) · P(Xt = 1) 
� � � � 

t − 1 t − 1 
= p k−1(1 − p)t−k · p = p k(1 − p)t−k . 

k − 1 k − 1 
The PMF of Yk is called a Pascal PMF. 

2.4 Merging and splitting of Bernoulli processes 

Suppose that {Xn} and {Yn} are independent Bernoulli processes with param-

eters p and q, respectively. Consider a “merged” process {Zn} which records 

an arrival at time n if and only if one or both of the original processes record an 

arrival. Formally, 

Zn = max{Xn, Yn}. 
The random variables Zn are i.i.d. Bernoulli, with parameter 

P(Zn = 1) = 1 − P(Xn = 0, Yn = 0) = 1 − (1 − p)(1 − q) = p + q − pq. 

In particular, {Zn} is itself a Bernoulli process. 

“Splitting” is in some sense the reverse process. If there is an arrival at time 

n (i.e., Xn = 1), we flip an independent coin, with parameter q, and record an 

arrival of “type I” or “type II”, depending on the coin’s outcome. Let {Xn} and 

{Yn} be the processes of arrivals of the two different types. Formally, let {Un} 
be a Bernoulli process with parameter q, independent from the original process 

{Zn}. We then let 

Xn = Zn · Un, Yn = Zn · (1 − Un). 

9 



3 

Note that the random variables Xn are i.i.d. Bernoulli, with parameter pq, so that 

{Xn} is a Bernoulli process with parameter pq. Similarly, {Yn} is a Bernoulli 

process with parameter p(1 − q). Note however that the two processes are de-

pendent. In particular, P(Xn = 1 | Yn = 1) = 0 6= pq = P(Xn = 1). 

THE POISSON PROCESS 

The Poisson process is best understood intuitively as a continuous-time analog 

of the Bernoulli process. The process starts at time zero, and involves a sequence 

of arrivals, at random times. It is described in terms of a collection of random 

variables N(t), for t ≥ 0, all defined on the same probability space, where 

N(0) = 0 and N(t), t > 0, represents the number of arrivals during the interval 

(0, t]. 
If we fix a particular outcome (sample path) ω, we obtain a time function 

whose value at time t is the realized value of N(t). This time function has 

discontinuities (unit jumps) whenever an arrival occurs. Furthermore, this time 

function is right-continuous: formally, lim˝↓t N(τ) = N(t); intuitively, the 

value of N(t) incorporates the jump due to an arrival (if any) at time t. 
We introduce some notation, analogous to the one used for the Bernoulli 

process: 

Y0 = 0, Yk = min{t | N(t) = k}, Tk = Yk − Yk−1. 

We also let 

P (k; t) = P(N(t) = k). 

The Poisson process, with parameter λ > 0, is defined implicitly by the 

following properties: 

(a) The numbers of arrivals in disjoint intervals are independent. Formally, 

if 0 < t1 < t2 < · · · < tk, then the random variables N(t1), N(t2) −
N(t1), . . . , N(tk) − N(tk−1) are independent. This is an analog of the 

independence of trials in the Bernoulli process. 

(b) The distribution of the number of arrivals during an interval is determined 

by λ and the length of the interval. Formally, if t1 < t2, then 

P(N(t2) − N(t1) = k) = P(N(t2 − t1) = k) = P (k; t2 − t1). 

(c) There exist functions o1, o1, o3 such that 

ok(δ) 
lim = 0, k = 1, 2, 3, 
�↓0 δ 
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and 

P (0; δ) = 1 − λδ + o1(δ) 

P (1; δ) = λδ + o2(δ), 
∞ 
X 

P (k; δ) = o3(δ), 
k=2

for all δ > 0. 

The ok functions are meant to capture second and higher order terms in a Taylor 

series approximation. 

3.1 The distribution of N(t) 

Let us fix the parameter λ of the process, as well as some time t > 0. We wish 

to derive a closed form expression for P (k; t). We do this by dividing the time 

interval (0, t] into small intervals, using the assumption that the probability of 

two or more arrivals in a small interval is negligible, and then approximate the 

process by a Bernoulli process. 

Having fixed t > 0, let us choose a large integer n, and let δ = t/n. We 

partition the interval [0, t] into n “slots” of length δ. The probability of at least 

one arrival during a particular slot is 

λt 
p = 1 − P (0; δ) = λδ + o(δ) = + o(1/n),

n 

for some function o that satisfies o(δ)/δ → 0. 

We fix k and define the following events: 

A: exactly k arrivals occur in (0, t]; 
B: exactly k slots have one or more arrivals; 

C: at least one of the slots has two or more arrivals. 

The events A and B coincide unless event C occurs. We have 

B ⊂ A ∪ C, A ⊂ B ∪ C, 

and, therefore, 

P(B) − P(C) ≤ P(A) ≤ P(B) + P(C). 

Note that 

P(C) ≤ n · o3(δ) = (t/δ) · o3(δ), 
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which converges to zero, as n → ∞ or, equivalently, δ → 0. Thus, P(A), which 

is the same as P (k; t) is equal to the limit of P(B), as we let n → ∞. 

The number of slots that record an arrival is binomial, with parameters n 
and p = λt/n + o(1/n). Thus, using the binomial probabilities, 

� � 

� �k� � n−k n λt λt 
P(B) = + o(1/n) 1 − + o(1/n) . 

k n n 
When we let n → ∞, essentially the same calculation as the one carried out in 

Lecture 6 shows that the right-hand side converges to the Poisson PMF, and 

(λt)k 
P (k; t) = e −�t . 

k! 

This establishes that N(t) is a Poisson random variable with parameter λt, and 

E[N(t)] = var(N(t)) = λt. 

3.2 The distribution of Tk 

In full analogy with the Bernoulli process, we will now argue that the interarrival 

times Tk are i.i.d. exponential random variables. 

3.2.1 First argument 

We have 

P(T1 > t) = P(N(t) = 0) = P (0; t) = e −�t . 
We recognize this as an exponential CDF. Thus, 

fT1 (t) = λe−�t , t > 0. 

Let us now find the joint PDF of the first two interarrival times. We give a 

heuristic argument, in which we ignore the probability of two or more arrivals 

during a small interval and any o(δ) terms. Let t1 > 0, t2 > 0, and let δ be a 

small positive number, with δ < t2. We have 

P(t1 ≤ T1 ≤ t1 + δ, t2 ≤ T2 ≤ t2 + δ) 

≈ P (0; t1) · P (1; δ) · P (0; t2 − t1 − δ) · P (1; δ) 

= e −�t1 λδe−�(t2 −�)λδ. 

We divide both sides by δ2 , and take the limit as δ ↓ 0, to obtain 

fT1,T2 (t1, t2) = λe−�t1 λe−�t2 . t1, t2 > 0. 

This shows that T2 is independent of T1, and has the same exponential distribu-

tion. This argument is easily generalized to argue that the random variables Tk 

are i.i.d. exponential, with common parameter λ. 
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3.2.2 Second argument 

We will first find the joint PDF of Y1 and Y2. Suppose for simplicity that λ = 1. 

let us fix some s and t that satisfy 0 < s ≤ t. We have 

� � 

P(Y1 ≤ s, Y2 ≤ t) = P N(s) ≥ 1, N(t) ≥ 2 
= P(N(s) = 1)P(N(t) − N(s) ≥ 1) + P(N(s) ≥ 2) 

−s) = se −s(1 − e −(t−s)) + (1 − e −s − se 
= −se −t + 1 − e −s .

Differentiating, we obtain 

∂2 
fY1,Y2 (s, t) = P(Y1 ≤ s, Y2 ≤ t) = e −t , 0 ≤ s ≤ t. 

∂t∂s 

We point out an interesting consequence: conditioned on Y2 = t, Y1 is 

uniform on (0, t); that is given the time of the second arrival, all possible times 

of the first arrival are “equally likely.” 

We now use the linear relations 

T1 = Y1, T2 = Y2 − Y1. 

The determinant of the matrix involved in this linear transformation is equal to 1. 

Thus, the Jacobian formula yields 

−t1 −t2 fT1,T2 (t1, t2) = fY1,Y2 (t1, t1 + t2) = e e , 

confirming our earlier independence conclusion. Once more this approach can 

be generalized to deal with ore than two interarrival times, although the calcula-

tions become more complicated 

3.2.3 Alternative definition of the Poisson process 

The characterization of the interarrival times leads to an alternative, but equiva-

lent, way of describing the Poisson process. Start with a sequence of indepen-

dent exponential random variables T1, T2,. . ., with common parameter λ, and 

record an arrival at times T1, T1 + T2, T1 + T2 + T3, etc. It can be verified 

that starting with this new definition, we can derive the properties postulated 

in our original definition. Furthermore, this new definition, being constructive, 

establishes that a process with the claimed properties does indeed exist. 
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3.3 The distribution of Yk 

Since Yk is the sum of k i.i.d. exponential random variables, its PDF can be 

found by repeating convolution. 

A second, somewhat heuristic, derivation proceeds as follows. If we ignore 

the possibility of two arrivals during a small interval, We have 

λk−1 
k−1 P(y ≤ Yk ≤ y + δ) = P (k − 1; y)P (1; δ) = y e −�yλδ. 

(k − 1)! 

We divide by δ, and take the limit as δ ↓ 0, to obtain 

λk−1 
k−1 fYk (y) = y e −�yλ, y > 0. 

(k − 1)! 

This is called a Gamma or Erlang distribution, with k degrees of freedom. 

For an alternative derivation that does not rely on approximation arguments, 

note that for a given y ≥ 0, the event {Yk ≤ y} is the same as the event 

number of arrivals in the interval [0, y] is at least k . 

Thus, the CDF of Yk is given by 

∞ k−1 k−1 
X X X 

−�y 
� � (λy)ne 

FYk (y) = P Yk ≤ y = P (n, y) = 1 − P (n, y) = 1 − . 
n! 

n=k n=0 n=0 

The PDF of Yk can be obtained by differentiating the above expression, and 

moving the differentiation inside the summation (this can be justified). After 

some straightforward calculation we obtain the Erlang PDF formula 

k−1 −�y d λky e 
fYk (y) = FYk (y) = . 

dy (k − 1)! 
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