MASSACHUSETTS INSTITUTE OF TECHNOLOGY

$6.436 \mathrm{~J} / 15.085 \mathrm{~J}$
Problem Set 4

Readings:

(a) Notes from Lecture 6 and 7.
(b) [Cinlar] Sections I.4, I. 5 and II. 2
(c) [GS] Chapter 3

Exercise 1. Let N be a random variable that takes nonnegative integer values. Let X_{1}, X_{2}, \ldots, be a sequence of i.i.d. discrete random variables that have finite expectation and are independent from N. Use iterated expectations to show that the expected value of $\sum_{i=1}^{N} X_{i}$ is $\mathbb{E}[N] \mathbb{E}\left[X_{1}\right]$.

Exercise 2. Let X and Y be binomial with parameters (m, p) and (n, q), respectively.
(a) Show that if X is independent from $Y, m=n$, and $p=q$ then $X+Y$ is binomial. Hint: Use the interpretation of the binomial, not algebra.
(b) Does the conclusion of part (a) remain valid if $m \neq n$? If X and Y are not independent? If $p \neq q$?
(c) Show that if X and Y are independent, then

$$
\mathbb{P}(X+Y=k)=\sum_{i=-\infty}^{\infty} p_{X}(i) p_{Y}(k-i) .
$$

(d) Use the result from part (c) to find the PMF of $X+Y$ where X and Y are independent Poisson random variables with parameters λ and μ, respectively. Hint: The "binomial theorem" states that

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i} .
$$

Exercise 3. A 4 -sided die has its four faces labeled as a, b, c, d. Each time the die is rolled, the result is a, b, c, or d, with probabilities $p_{a}, p_{b}, p_{c}, p_{d}$, respectively. Different rolls are statistically independent. The die is rolled n times. Let N_{a} and N_{b} be the number of rolls that resulted in a or b, respectively. Find the covariance of N_{a} and N_{b}.

Exercise 4. Suppose that X and Y are discrete random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. An elegant way of defining the conditional expectation of Y given X is as a random variable of the form $\phi(X)$ (where ϕ is a measurable function), such that

$$
\mathbb{E}[\phi(X) g(X)]=\mathbb{E}[Y g(X)],
$$

for all measurable functions g. In this problem, we will prove that this condition defines the conditional expectation uniquely; that is, if we also have

$$
\mathbb{E}[\psi(X) g(X)]=\mathbb{E}[Y g(X)],
$$

for every measurable function g, then $\phi(X)$ and $\psi(X)$ are almost surely equal, i.e., $\mathbb{P}(\phi(X)=\psi(X))=1$.
(a) Prove that the following sets are \mathcal{F}-measurable: $\{\phi(X)>\psi(X)\}$ and, for any integer $n, A_{n}:=\{\phi(X)>\psi(X)+1 / n\}$.
(b) Assume the contradiction $\mathbb{P}(\phi(X)=\psi(X))<1$ and use $g(x)=\mathbf{1}_{A_{n}}$ for some appropriate n to show that the conditional expectation is unique.

Exercise 5. A machine is refilled each morning with n portions of vanilla and chocolate ice creams each (a total of $2 n$ portions). Customers arrive sequentially, each getting one of the ice creams independently with probability $1 / 2$. Consider the first moment when a customer receives an "out of order" message. Let X be the number of portions of the other type left at this moment, $0 \leq X \leq n$. Find the distribution of X.

Exercise 6. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. (So, μ is a measure, but not necessarily a probability measure.) Let $g: \Omega \rightarrow \mathbb{R}$ be a nonnegative measurable function. Let $\left\{B_{i}\right\}$ be a sequence of disjoint measurable sets. Prove that

$$
\int_{\cup_{i} B_{i}} g d \mu=\sum_{i=1}^{\infty} \int_{B_{i}} g d \mu .
$$

(Be rigorous!)

Note: As an application, this exercise gives another rich source of probability measures. Namely, take f-a nonnegative measurable function on the real line with $\int_{\mathbb{R}} f(x) d x=1$ (integral w.r.t. Lebesgue measure), and define a set-function $\mathbb{P}(A)=\int_{A} f d x$. The exercise shows that $\mathbb{P}(\cdot)$ is a probability measure on $(\mathbb{R}, \mathcal{B})$. Function f is called the probability density function (PDF) of \mathbb{P}.

Exercise 7. [Optional, not to be graded] Let μ and ν be two finite measures on $(\mathbb{R}, \mathcal{B})$. Show that if

$$
\int_{\mathbb{R}} f d \mu=\int_{\mathbb{R}} f d \nu
$$

for all bounded continuous functions f then $\mu=\nu$. (Hint: write $\mathbb{1}_{(a, b)}(x)$ as an increasing limit of continuous functions.)
Note: This exercise shows that measure on Borel σ-algebra is uniquely characterized by its values on continuous functions. This is true on $\mathbb{R}, \mathbb{R}^{n}$ and any other topological space. Similar to how it is sufficient to know measures only on intervals $(-\infty, a)$ it is sufficient to consider only a handful of functions (such as all sines and cosines, or all exponents). This will be discussed later.

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

