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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 
Problem Set 4 

Readings:
(a) Notes from Lecture 6 and 7.
(b) [Cinlar] Sections I.4, I.5 and II.2
(c) [GS] Chapter 3

Exercise 1. Let N be a random variable that takes nonnegative integer values. 
Let X1,X2, . . ., be  a  sequence  of  i.i.d. discrete  random  variables  that  have  finite
expectation and are independent from N . Use  iterated  expectations  to  show  that

N the expected value of Xi is E[N ]E[X1]. i=1 

Exercise 2. Let X and Y be binomial with parameters (m, p) and (n, q), re-
spectively. 

(a) Show that if X is independent from Y , m = n, and  p = q then X + Y is
binomial. Hint: Use the interpretation of the binomial, not algebra.

(b) Does the conclusion of part (a) remain valid if m ̸= n? If  X and Y are
not independent? If p ̸= q?

(c) Show that if X and Y are independent, then

∞

P(X + Y = k) = pX (i)pY (k − i). 
i=−∞ 

(d) Use the result from part (c) to find the PMF of X + Y where X and
Y are independent Poisson random variables with parameters λ and µ,
respectively. Hint: The “binomial theorem” states that

Exercise 3. A 4-sided  die  has  its  four  faces  labeled  as  a, b, c, d. Each  time  the  die
is rolled, the result is a, b, c, or  d, with  probabilities  pa, pb, pc, pd, respectively.
Different rolls are statistically independent. The die is rolled n times. Let Na

and Nb be the number of rolls that resulted in a or b, respectively.  Find  the
covariance of Na and Nb. 
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Exercise 4. Suppose that X and Y are discrete random variables on (Ω,F ,P). 
An elegant way of defining the conditional expectation of Y given X is as a 
random variable of the form φ(X) (where φ is a measurable function), such that 

E[φ(X)g(X)] = E[Y g(X)], 

for all measurable functions g. In  this  problem,  we  will  prove  that  this  condition
defines the conditional expectation uniquely; that is, if we also have 

E[ψ(X)g(X)] = E[Y g(X)], 

for every measurable function g, then  φ(X) and ψ(X) are almost surely equal, 
i.e., P(φ(X) =  ψ(X)) = 1.

(a) Prove that the following sets are F-measurable: {φ(X) > ψ(X)} and,
for any integer n, An := {φ(X) > ψ(X) + 1/n}.

(b) Assume the contradiction P(φ(X) =  ψ(X)) < 1 and use g(x) =  1An for
some appropriate n to show that the conditional expectation is unique.

Exercise 5. A machine  is  refilled  each  morning  with  n portions of vanilla and 
chocolate ice creams each (a total of 2n portions). Customers arrive sequentially,
each getting one of the ice creams independently with probability 1/2. Consider
the first moment when a customer receives an “out of order” message. Let X be 
the number of portions of the other type left at this moment, 0 ≤ X ≤ n. Find
the distribution of X. 

Exercise 6. Let (Ω,F , µ) be a measure space. (So, µ is a measure, but not 
necessarily a probability measure.) Let g : Ω → R be a nonnegative measurable 
function. Let {Bi} be a sequence of disjoint measurable sets. Prove that 

(Be rigorous!)
Note: As an application, this exercise gives another rich source of probability  measures.
Namely, take f – a  nonnegative  measurable  function  on the  real  line  with  f(x)dx = 1

R 

(integral w.r.t. Lebesgue measure), and define a set-function P(A) =  fdx. The
A 

exercise shows that P(·) is a probability measure on (R,B). Function  f is called the 
probability density function (PDF) of P. 
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Exercise 7. [Optional, not to be graded] Let µ and ν be two finite measures on 
(R,B). Show  that  if  

f dµ = f dν 
R R 

for all bounded continuous functions f then µ = ν. (Hint: write (a,b)(x) as an 
increasing limit of continuous functions.)
Note: This exercise shows that measure on Borel σ-algebra is uniquely characterized 
by its values on continuous functions. This is true on R, Rn and any other topological 
space. Similar to how it is sufficient to know measures only on intervals (−∞, a) it is 
sufficient to consider only a handful of functions (such as all sines  and  cosines,  or  all
exponents). This will be discussed later. 

3 

∫ ∫



MIT OpenCourseWare 
https://ocw.mit.edu 

6.436J / 15.085J Fundamentals of Probability 
Fall 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu/terms
https://ocw.mit.edu



