6.436J/15.085J	Fall 2018
Problem Set 4	

Readings:

(a) Notes from Lecture 6 and 7.(b) [Cinlar] Sections I.4, I.5 and II.2(c) [GS] Chapter 3

Exercise 1. Let N be a random variable that takes nonnegative integer values. Let X_1, X_2, \ldots , be a sequence of i.i.d. discrete random variables that have finite expectation and are independent from N. Use iterated expectations to show that the expected value of $\sum_{i=1}^{N} X_i$ is $\mathbb{E}[N]\mathbb{E}[X_1]$.

Exercise 2. Let X and Y be binomial with parameters (m, p) and (n, q), respectively.

- (a) Show that if X is independent from Y, m = n, and p = q then X + Y is binomial. *Hint:* Use the interpretation of the binomial, not algebra.
- (b) Does the conclusion of part (a) remain valid if m ≠ n? If X and Y are not independent? If p ≠ q?
- (c) Show that if X and Y are independent, then

$$\mathbb{P}(X+Y=k) = \sum_{i=-\infty}^{\infty} p_X(i)p_Y(k-i).$$

(d) Use the result from part (c) to find the PMF of X + Y where X and Y are independent Poisson random variables with parameters λ and μ , respectively. *Hint:* The "binomial theorem" states that

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}.$$

Exercise 3. A 4-sided die has its four faces labeled as a, b, c, d. Each time the die is rolled, the result is a, b, c, or d, with probabilities p_a, p_b, p_c, p_d , respectively. Different rolls are statistically independent. The die is rolled n times. Let N_a and N_b be the number of rolls that resulted in a or b, respectively. Find the covariance of N_a and N_b .

Exercise 4. Suppose that X and Y are discrete random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. An elegant way of defining the conditional expectation of Y given X is as a random variable of the form $\phi(X)$ (where ϕ is a measurable function), such that

$$\mathbb{E}[\phi(X)g(X)] = \mathbb{E}[Yg(X)],$$

for all measurable functions g. In this problem, we will prove that this condition defines the conditional expectation uniquely; that is, if we also have

$$\mathbb{E}[\psi(X)g(X)] = \mathbb{E}[Yg(X)],$$

for every measurable function g, then $\phi(X)$ and $\psi(X)$ are almost surely equal, i.e., $\mathbb{P}(\phi(X) = \psi(X)) = 1$.

- (a) Prove that the following sets are \mathcal{F} -measurable: $\{\phi(X) > \psi(X)\}$ and, for any integer $n, A_n := \{\phi(X) > \psi(X) + 1/n\}$.
- (b) Assume the contradiction P(φ(X) = ψ(X)) < 1 and use g(x) = 1_{A_n} for some appropriate n to show that the conditional expectation is unique.

Exercise 5. A machine is refilled each morning with n portions of vanilla and chocolate ice creams each (a total of 2n portions). Customers arrive sequentially, each getting one of the ice creams independently with probability 1/2. Consider the first moment when a customer receives an "out of order" message. Let X be the number of portions of the other type left at this moment, $0 \le X \le n$. Find the distribution of X.

Exercise 6. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. (So, μ is a measure, but not necessarily a probability measure.) Let $g : \Omega \to \mathbb{R}$ be a nonnegative measurable function. Let $\{B_i\}$ be a sequence of disjoint measurable sets. Prove that

$$\int_{\cup_i B_i} g \, d\mu = \sum_{i=1}^\infty \int_{B_i} g \, d\mu.$$

(Be rigorous!)

Note: As an application, this exercise gives another rich source of probability measures. Namely, take f – a nonnegative measurable function on the real line with $\int_{\mathbb{R}} f(x)dx = 1$ (integral w.r.t. Lebesgue measure), and define a set-function $\mathbb{P}(A) = \int_A f dx$. The exercise shows that $\mathbb{P}(\cdot)$ is a probability measure on $(\mathbb{R}, \mathcal{B})$. Function f is called the probability density function (PDF) of \mathbb{P} . **Exercise 7.** *[Optional, not to be graded]* Let μ and ν be two finite measures on $(\mathbb{R}, \mathcal{B})$. Show that if

$$\int_{\mathbb{R}} f \, d\mu = \int_{\mathbb{R}} f \, d\nu$$

for all bounded continuous functions f then $\mu = \nu$. (*Hint:* write $\mathbb{1}_{(a,b)}(x)$ as an increasing limit of continuous functions.)

Note: This exercise shows that measure on Borel σ -algebra is uniquely characterized by its values on continuous functions. This is true on \mathbb{R} , \mathbb{R}^n and any other topological space. Similar to how it is sufficient to know measures only on intervals $(-\infty, a)$ it is sufficient to consider only a handful of functions (such as all sines and cosines, or all exponents). This will be discussed later.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>