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PROBABILISTIC EXPERIMENTS 

Probability theory is a mathematical framework that allows us to reason about 

phenomena or experiments whose outcome is uncertain. A probabilistic model 

is a mathematical model of a probabilistic experiment that satisfies certain math-

ematical properties (the axioms of probability theory), and which allows us to 

calculate probabilities and to reason about the likely outcomes of the experi-

ment. 

A probabilistic model is defined formally by a triple ( , F , P), called a 

probability space, comprised of the following three elements: 

(a) is the sample space, the set of possible outcomes of the experiment. 

(b) F is a σ-field, a collection of subsets of . (The term “σ-algebra” is also 

commonly used, as a synonym.) 

(c) P is a probability measure, a function that assigns a nonnegative probabil-

ity to every set in the σ-field F . 

Our objective is to describe the three elements of a probability space, and 

explore some of their properties. 
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SAMPLE SPACE 

The sample space is a set comprised of all the possible outcomes of the ex-

periment. Typical elements of are often denoted by ω, and are called ele-

mentary outcomes, or simply outcomes. The sample space can be finite, e.g., 

= {ω1, . . . , ωn}, countable, e.g., = N, or uncountable, e.g., = R or 

= {0, 1}∞ . 

As a practical matter, the elements of must be mutually exclusive and 

collectively exhaustive, in the sense that once the experiment is carried out, there 

is exactly one element of that occurs. 

Examples 

(a) If the experiment consists of a single roll of an ordinary die, the natural sample 

space is the set = {1, 2, . . . , 6}, consisting of 6 elements. The outcome ω = 2 
indicates that the result of the roll was 2. 

(b) If the experiment consists of five consecutive rolls of an ordinary die, the natural 

sample space is the set = {1, 2, . . . , 6}5 . The element ω = (3, 1, 1, 2, 5) is an 

example of a possible outcome. 

(c) If the experiment consists of an infinite number of consecutive rolls of an ordinary 

die, the natural sample space is the set = {1, 2, . . . , 6}1 . In this case, an elemen-

tary outcome is an infinite sequence, e.g., ω = (3, 1, 1, 5, . . .). Such a sample space 

would be appropriate if we intend to roll a die indefinitely and we are interested in 

studying, say, the number of rolls until a 4 is obtained for the first time. 

(d) If the experiment consists of measuring the velocity of a vehicle with infinite preci-

sion, a natural sample space is the set R of real numbers. 

Note that there is no discussion of probabilities so far. The set simply 

specifies the possible outcomes. 

DISCRETE PROBABILITY SPACES 

Before continuing with the discussion of σ-fields and probability measures in 

their full generality, it is helpful to consider the simpler case where the sample 

space is finite or countable. 
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Definition 1. A discrete probability space is a triplet ( , F , P) such that: 

(a) The sample space is finite or countable: = {ω1, ω2, . . .}. 

(b) The σ-field F is the set of all subsets of . 

(c) The probability measure assigns a number in the set [0, 1] to every subset 

of . It is defined in terms of the probabilities P({ω}) of the elementary 

outcomes, and satisfies 

(1) 

for every A ⊂ , and 

For simplicity, we will usually employ the notation P(ω) instead of P({ω}), 
and we will often denote P(ωi) by pi. 

The following are some examples of discrete probability spaces. Note that 

typically we do not provide an explicit expression for P(A) for every A ⊂ . It 

suffices to specify the probability of elementary outcomes, from which P(A) is 

readily obtained for any A. 

Examples. 

(a) Consider a single toss of a coin. If we believe that heads (H) and tails (T) are 

equally likely, the following is an appropriate model. We set = {ω1, ω2}, where 

ω1 = H and ω2 = T , and let p1 = p2 = 1/2. Here, F = {Ø, {H}, {T }, {H, T }}, 

and P(Ø) = 0, P(H) = P(T ) = 1/2, P({H, T }) = 1. 

(b) Consider a single roll of a die. if we believe that all six outcomes are equally likely, 

the following is an appropriate model. We set = {1, 2, . . . , 6} and p1 = · · · = 
p6 = 1/6. 

(c) This example is not necessarily motivated by a meaningful experiment, yet it is a 

legitimate discrete probability space. Let = {1, 2, 5, a, v, aaa, ∗}, and P(1) = .1, 

P(2) = .1, P(5) = .3, P(a) = .15, P(v) = .15, P(aaa) = .2, P(∗) = 0. 

(d) Let = N, and pk = (1/2)k , for k = 1, 2, . . . . More generally, given a parameter 
k−1 p ∈ [0, 1), we can define pk = (1 − p)p , for k = 1, 2, . . . . This results in a 

P

1 k−1 legitimate probability space because (1 − p)p = 1. 
k=1 

(e) Let = N. We fix a parameter λ > 0, and let pk = e−�λk/k!, for k = 0, 1, . . .. 
P

1 

This results in a legitimate probability space because e−�λk/k! = 1. 
k=0 

(f) We toss an unbiased coin n times. We let = {0, 1}n , and if we believe that all se-

quences of heads and tails are equally likely, we let P(ω) = 1/2n for every ω ∈ . 
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4 σ-FIELDS 

When the sample space is uncountable, the idea of defining the probability of 

a general subset of in terms of the probabilities of elementary outcomes runs 

into difficulties. Suppose, for example, that the experiment consists of drawing 

a number from the interval [0, 1], and that we wish to model a situation where all 

elementary outcomes are “equally likely.” If we were to assign a probability of 

zero to every ω, this alone would not be of much help in determining the proba-

bility of a subset such as [1/2, 3/4]. If we were to assign the same positive value 

to every ω, we would obtain P({1, 1/2, 1/3, . . .}) = ∞, which is undesirable. 

A way out of this difficulty is to work directly with the probabilities of more 

general subsets of (not just subsets consisting of a single element). 

Ideally, we would like to specify the probability P(A) of every subset of 

. However, if we wish our probabilities to have certain intuitive mathematical 

properties, we run into some insurmountable mathematical difficulties. A so-

lution is provided by the following compromise: assign probabilities to only a 

partial collection of subsets of . The sets in this collection are to be thought 

of as the “nice” subsets of , or, alternatively, as the subsets of of interest. 

Mathematically, we will require this collection to be a σ-field, a term that we 

define next. 
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(g) We roll a die n times. We let Ω = {1, 2, . . . , 6}n, and if we believe that all elemen-

tary outcomes (6-long sequences) are equally likely, we let P(ω) = 1/6n for every

ω ∈ Ω.

Given the probabilities pi, the problem of determining P(A) for some sub-

set of Ω is conceptually straightfo
∑

rward. However, the calculations involved in

determining the value of the sum P(ω) can range from straightforward toω∈A

daunting. Various methods that can simplify such calculations will be explored

in future lectures.
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Definition 2. Given a sample space , a σ-field is a collection F of subsets 

of , with the following properties: 

(a) Ø ∈ F . 

(b) If A ∈ F , then Ac ∈ F . 

(c) If Ai ∈ F for every i ∈ N, then ∪∞ 
i=1Ai ∈ F . 

A set A that belongs to F is called an event, an F-measurable set, or simply 

a measurable set. The pair ( , F) is called a measurable space. 

Remark. A σ-field is often called a σ-algebra, and these terms will be used 

interchangeably. If we relax condition (c) and require only finite unions to be in 

F , we get a definition of field (or algebra) of sets – see Def. 4 below. 

The term “event” is to be understood as follows. Once the experiment is 

concluded, the realized outcome ω either belongs to A, in which case we say 

that the event A has occurred, or it doesn’t, in which case we say that the event 

did not occur. 

It turns out that if Ai ∈ F for every i ∈ N, then ∩n Ai ∈ F , i.e., a σ-field i=1 

is closed under countable intersections as well. 

Exercise 1. 

(a) Let F be a σ-field. Prove that if A, B ∈ F , then A ∩ B ∈ F . More generally, given 

a countably infinite sequence of events Ai ∈ F , prove that ∩1 Ai ∈ F . Hint: Use 
i=1 

De Morgan’s law. 

(b) Prove that property (a) of σ-fields (that is, Ø ∈ F ) can be derived from properties 

(b) and (c), assuming that the σ-field F is non-empty. 

The following are some examples of σ-fields. (Check that this is indeed the 

case.) 

Examples. 

(a) The trivial σ-field, F = {Ø, }. 

(b) The collection F = {Ø, A, Ac , }, where A is a fixed subset of . 

(c) The set of all subsets of : F = 2 = {A | A ⊂ }. 

(d) Let = {1, 2, . . . , 6}n , the sample space associated with n rolls of a die. Let 

A = {ω = (ω1, . . . ωn) | ω1 ≤ 2}, B = {ω = (ω1, . . . , ωn) | 3 ≤ ω1 ≤ 4}, and 

C = {ω = (ω1, . . . , ωn) | ω1 ≥ 5}, and F = {Ø, A, B, C, A∪B, A∪C, B∪C, }. 
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Example (d) above can be thought of as follows. We start with a number of 

subsets of that we wish to have included in a σ-field (the sets A, B, and C , in 

this example). We then include more subsets, as needed, until a σ-field is con-

structed. More generally, given a collection of subsets of , we can contemplate 

forming complements, countable unions, and countable intersections of these 

subsets, to form a new collection. We continue this process until no more sets 

are included in the collection, at which point we obtain a σ-field. This process 

is hard to formalize in a rigorous manner. An alternative way of defining this 

σ-field is provided below. We will need the following fact. 

Proposition 1. Let S be an index set (possibly infinite, or even uncountable), 

and suppose that for every s we have a σ-field Fs of subsets of the same 

sample space. Let F = ∩s∈SFs, i.e., a set A belongs to F if and only if 

A ∈ Fs for every s ∈ S. Then F is a σ-field. 

Proof. We need to verify that F has the three required properties. Since each 

Fs is a σ-field, we have Ø ∈ Fs, for every s, which implies that Ø ∈ F . To 

establish the second property, suppose that A ∈ F . Then, A ∈ Fs, for every s. 

Since each Fs is a σ-field, we have Ac ∈ Fs, for every s. Therefore, Ac ∈ F , 

as desired. Finally, to establish the third property, consider a sequence {Ai} of 

elements of F . In particular, for a given s ∈ S, every set Ai belongs to Fs. Since 

Fs is a σ-field, it follows that ∪∞ Ai ∈ Fs. Since this is true for every s ∈ S, i=1 

it follows that ∪∞ Ai ∈ F . This verifies the third property and establishes that i=1 

F is indeed a σ-field. 

Suppose now that we start with a collection C of subsets of , which is not 

necessarily a σ-field. We wish to form a σ-field that contains C. This is always 

possible, a simple choice being to just let F = 2 . However, for technical 

reasons, we may wish the σ-field to contain no more sets than necessary. This 

leads us to define F as the intersection of all σ-fields that contain C. Note that 

if H is any other σ-field that contains C, then F ⊂ H. (This is because F was 

defined as the intersection of various σ-fields, one of which is H.) In this sense, 

F is the smallest σ-field containing C. The σ-field F constructed in this manner 

is called the σ-field generated by C, and is often denoted by σ(C). 

Example. Let = [0, 1]. The smallest σ-field that includes every interval [a, b] ⊂ [0, 1] 
is hard to describe explicitly (it includes fairly complicated sets), but is still well-defined, 

by the above discussion. It is called the Borel σ-field, and is denoted by B. A set 
1 A ⊂ [0, 1] that belongs to this σ-field is called a Borel set. 

1The Borel ˙-field is usually defined as the ˙-field generated by the collection of open sets of 
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4.1 Other reasons for “small” σ-fields. 

As we discussed earlier, one reason for using a σ-field which does not include 

all subsets of is in order to avoid insurmountable mathematical difficulties. 

However, there is also another reason: we may want to capture the perspective 

of an observer who receives only partial information about the outcome of the 

experiment. In that case, it is convenient (loosely speaking) to let F be just the 

set of events for which the observer will be able to tell whether they occurred or 

not. 

With this perspective, a σ-field can be viewed as an abstract description 

of the information that an observer receives. In particular, if the information 

available to observers 1 and 2 is described by σ-fields F1 and F2, respectively, 

and if F2 ⊂ F1, we have a situation in which observer 2 has less information. 

Example. We flip a coin twice, and each flip results in Heads (H) or Tails (T). In this 

context, = {HH, HT, T H, T T }. The natural σ-field, F1, is the collection of all 

subsets of . Consider now an observer who sees only the result of the first coin flip. In 

this case, we describe the information available to that observer in terms of the smaller 

Ω

F2 =
σ-field

{

Ø, Ω, {HH,HT }, {TH, TT }
}

.

In particular, this observer can tell whether the event {HH,HT } has occurred or not,

but cannot tell whether the event {HH} has occurred.

We will turn to this association of σ-fields to observers much later, when we

consider conditional expectations given partial information.

5 PROBABILITY MEASURES

We are now ready to discuss the assignment of probabilities to events. We have

already seen that when the sample space Ω is countable, this can be accom-

plished by assigning probabilities to individual elements ω ∈ Ω. However, as

discussed before, this does not work when Ω is uncountable. We are then led

to assign probabilities to certain subsets of Ω, specifically to the elements of a

σ-field F , and require that these probabilities have certain “natural” properties.

Besides probability measures, it is also convenient to define the notion of a

measure more generally.

We will be using the following terminology. We say that a collection of sets

Aα ⊂ Ω, where α ranges over some index set is mutually exclusive or that the

sets are disjoint if Aα ∩Aα′ = Ø, whenever α 6= α′. Also, the sets Aα ⊂ Ω are

called collectively exhaustive if ∪αAα = Ω.

a topological space. But for the case of the unit interval our definition is an equivalent one.
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Definition 3. Let ( , F) be a measurable space. A measure is a function 

µ : F → [0, ∞], which assigns a nonnegative extended real number µ(A) to 

every set A in F , and which satisfies the following two conditions: 

(a) µ(Ø) = 0; 

(b) (Countable additivity, or σ-additivity) If {Ai} is a sequence of disjoint 
P∞ sets that belong to F , then µ(∪iAi) = i=1 µ(Ai). 

A probability measure is a measure P with the additional property P( ) = 
1. In that case, the triple ( , F , P) is called a probability space. 

In short, a measure is a nonnegative extended real valued σ-additive set func-

tion with domain F . 

For any A ∈ F , P(A) is called the probability of the event A. The assign-

ment of unit probability to the event expresses our certainty that the outcome 

of the experiment, no matter what it is, will be an element of . Similarly, the 

outcome cannot be an element of the empty set; thus, the empty set cannot occur 

and is assigned zero probability. If an event A ∈ F satisfies P(A) = 1, we say 

that A occurs almost surely. Note, however, that A happening almost surely is 

not the same as the condition A = . For a trivial example, let = {1, 2, 3}, 

p1 = .5, p2 = .5, p3 = 0. Then the event A = {1, 2} occurs almost surely, 

since P(A) = .5 + .5 = 1, but A 6= . The outcome 3 has zero probability, but 

is still possible. We will study more interesting examples of almost sure events 

later on when we give examples of non-discrete probability spaces. 

The countable additivity property is very important. Its intuitive meaning 

is the following. If we have several events A1, A2, . . ., out of which at most 

one can occur, then the probability that “one of them will occur” is equal to 

the sum of their individual probabilities. In this sense, probabilities (and more 

generally, measures) behave like the familiar notions of area or volume: the area 

or volume of a countable union of disjoint sets is the sum of their individual areas 

or volumes. Indeed, a measure is to be understood as some generalized notion 

of a volume. In this light, allowing the measure µ(A) of a set to be infinite is 

natural, since one can easily think of sets with infinite volume. 

The properties of probability measures that are required by Definition 3 are 

often called the axioms of probability theory. Starting from these axioms, many 

other properties can be derived, as in the next proposition. 
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Proposition 2. Probability measures have the following properties. 

(a) (Finite additivity) If the events A1, . . . , An are disjoint, then P(∪n Ai) = i=1 
Pn 

i=1 P(Ai). 

(b) For any event A, we have P(Ac) = 1 − P(A). 

(c) If the events A and B satisfy A ⊂ B, then P(A) ≤ P(B). 

(d) (Union bound) For any sequence {Ai} of events, we have 

(e) (Inclusion-exclusion formula) For any collection of events A1, . . . , An, 

Proof. 

(a) This property is almost identical to condition (b) in the definition of a mea-

sure, except that it deals with a finite instead of a countably infinite collec-

tion of events. Given a finite collection of disjoint events A1, . . . , An, let us 

define Ak = Ø for k > n, to obtain an infinite sequence of disjoint events. 

Then, 

Countable additivity was used in the second equality, and the fact P(Ø) = 0 
was used in the last equality. 

(b) The events A and Ac are disjoint. Using part (a), we have P(A ∪ Ac) = 
P(A) + P(Ac). But A ∪ Ac = , whose measure is equal to one, and the 

result follows. 

(c) The events A and B \ A are disjoint. Also, A ∪ (B \ A) = B. Therefore, 

using also part (a), we obtain P(A) ≤ P(A) + P(B \ A) = P(B). 

(d) Left as an exercise. 
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⋃

∞

i=1

Ai

)

≤

∞
∑

i=1

P(Ai).

P

i=1

Ai =
i=1

P(Ai)−
(

n
⋃

)

n
∑ ∑

(i,j): i<j

P(Ai ∩ Aj)

+
∑

(i,j,k): i<j<k

P(Ai ∩ Aj ∩ Ak) + · · ·+ (−1)n−1
P(A1 ∩ · · · ∩An).

P

(

n
⋃

i=1

Ai

)

= P

(

∞
⋃

i=1

Ai

)

=
∞
∑

i=1

P(Ai) =
n
∑

i=1

P(Ai).
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(e) Left as an exercise; a simple proof will be provided later, using random 

variables. 

For the special case where n = 2, part (e) of Proposition 2 simplifies to 

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Let us note that all properties (a), (c), and (d) in Proposition 2 are also valid 

for general measures (the proof is the same). Let us also note that for a proba-

bility measure, the property P(Ø) = 0 need not be assumed, but can be derived 

from the other properties. Indeed, consider a sequence of sets Ai, each of which 

is equal to the empty set. These sets are disjoint, since Ø ∩ Ø = Ø. Applying 
P∞ the countable additivity property, we obtain i=1 P(Ø) = P(Ø) ≤ P( ) = 1, 

which can only hold if P(Ø) = 0. 

Finite Additivity 

Our definitions of σ-fields and of probability measures involve countable unions 

and a countable additivity property. A different mathematical structure is ob-

tained if we replace countable unions and sums by finite ones. This leads us to 

the following definitions. 

Definition 4. Let be a sample space. 

(a) A field is a collection F0 of subsets of , with the following properties: 

(i) Ø ∈ F . 

(ii) If A ∈ F , then Ac ∈ F . 

(iii) If A ∈ F and B ∈ F , then A ∪ B ∈ F . 

(b) Let F0 be a field of subsets of . A function P : F0 → [0, 1] is said to be 

finitely additive if 

A, B ∈ F0, A ∩ B = Ø ⇒ P(A ∪ B) = P(A) + P(B). 

Remark. A field (of sets) is often called an algebra (of sets), and these terms 

will be used interchangeably. 

We note that finite additivity, for the two case of two events, easily implies 

finite additivity for a general finite number n of events, namely, the property in 
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part (a) of Proposition 2. To see this, note that finite additivity for n = 2 allows 

us to write, for the case of three disjoint events, 

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2 ∪ A3) = P(A1) + P(A2) + P(A3), 

and we can proceed inductively to generalize to the case of n events. 

Finite additivity is strictly weaker than the countable additivity property of 

probability measures. In particular, finite additivity on a field, or even for the 

special case of a σ-field, does not, in general, imply countable additivity. The 

reason for introducing the stronger countable additivity property is that with-

out it, we are severely limited in the types of probability calculations that are 

possible. On the other hand, finite additivity is often easier to verify. 

CONTINUITY OF PROBABILITIES 

Consider a probability space in which = R. The sequence of events An = 
[1, n] converges to the event A = [1, ∞), and it is reasonable to expect that the 

probability of [1, n] converges to the probability of [1, ∞). Such a property is 

established in greater generality in the result that follows. This result provides 

us with a few alternative versions of such a continuity property, together with 

a converse which states that finite additivity together with continuity implies 

countable additivity. This last result is a useful tool that often simplifies the 

verification of the countable additivity property. 

Theorem 1. (σ-additivity ⇐⇒ continuity) Let F be a field of subsets of 

, and suppose that P : F → [0, 1] satisfies P( ) = 1 as well as the finite 

additivity property. Then, the following are equivalent: 

(a) P is σ-additive on F . In other words, if {Aj }
∞
j=1–disjoint, Aj ∈ F and 

P∞A = ∪∞ 
j=1Aj ∈ F then P(A) = P(Aj ). j=1 

(b) If {Ai} is an increasing sequence of sets in F (i.e., Ai ⊂ Ai+1, for all i), 
and A = ∪∞ 

i=1Ai belongs to F , then limi→∞ P(Ai) = P(A). 

(c) If {Ai} is a decreasing sequence of sets in F (i.e., Ai ⊃ Ai+1, for all i), 
and A = ∩∞ Ai belongs to F , then limi→∞ P(Ai) = P(A). i=1 

(d) If {Ai} is a decreasing sequence of sets in F (i.e., Ai ⊃ Ai+1, for all i) 
and ∩∞ Ai is empty, then limi→∞ P(Ai) = 0. i=1 

Notes: 

• If F is also a σ-algebra then A in (a), (b) and (c) is automatically in F . 
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• Theorem extends to general (non-probability) measures provided P( ) <
∞. 

• Notation: If {Ai} is a decreasing sequence of sets (i.e., Ai ⊃ Ai+1, for 

all i) and ∩∞ = A, we write Ai ↓ A. Thus, in part (d) above, we are i=1Ai 

assuming that Ai ↓ Ø. 

Proof. We first assume that (a) holds and establish (b). Observe that A = A1 ∪ 
(A2 \ A1) ∪ (A3 \ A2) ∪ . . ., and that the events A1, (A2 \ A1), (A3 \ A2), . . . 
are disjoint (check this). Therefore, using countable additivity, 

Suppose now that property (b) holds, let Ai be a decreasing sequence of 

sets, and let A = ∩∞ ∈ F . Then, the sequence Ac is increasing, and De i=1Ai i 

Morgan’s law, together with property (b) imply that 

Property (d) follows from property (c), because (d) is just the special case of 

(c) in which the set A is empty. 

To complete the proof, we now assume that property (d) holds and establish 

that property (a) holds as well. Let Bi ∈ F be disjoint events. Let An = 
∪∞ Bi. Note that {An} is a decreasing sequence of events. We claim that i=n 

∩∞ = Ø. Indeed, if ω ∈ A1, then ω ∈ Bn for some n, which implies that n=1An 

ω ∈/ ∪∞ = An+1. Therefore, no element of A1 can belong to all of the i=n+1Bi 

sets An, which means that that the intersection of the sets An is empty. Property 

(d) then implies that limn→∞ P(An) = 0. 
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P(A) = P(A1) +

∞
∑

i=2

P(Ai \Ai−1)

= P(A1) + lim
n→∞

n
∑

i=2

P(Ai \Ai−1)

= P(A1) + lim
n→∞

n
∑

i=2

(

P(Ai)− P(Ai−1)
)

= P(A1) + lim
n→∞

(P(An)− P(A1))

= lim
n→∞

P(An).

P(Ac) = P

(

(

∩i
∞
=1 Ai

)c
)

= P
(

∪i
∞
=1 A

c
i

)

= lim
n→∞

c
P(Ai ),

and

P(A) = 1− P(Ac) = 1− lim
n→∞

c
P(Ai ) = lim

n→∞

(

c1− P(Ai )
)

= lim
n→∞

P(Ai).



  

 










Applying finite additivity to the n disjoint sets B1, B2, . . . , Bn−1, ∪∞ Bi, i=n 

we have 

This equality holds for any n, and we can take the limit as n → ∞. The first term 
P∞ on the right-hand side converges to i=1 P(Bi). The second term is P(An), and 

as observed before, converges to zero. We conclude that 

and property (a) holds. 

6.1 Discrete probability spaces revisited 

In Section 3, we defined P(A) for every A ⊂ in terms of the probabilities 

of individual outcomes. We actually need to verify that this formula results in 

probabilities that satisfy countable additivity. 

To this effect, we can use Theorem 1. We only need to verify (i) finite 

additivity and (ii) the continuity property in part (d). 

Regarding finite additivity, it suffices to consider the case of two sets; the 

general case is obtained by induction on the number of sets. Suppose that the 

sets A = {ω1, ω2, . . .} and B = {ω1 
′ , ω2 

′ , . . .} are disjoint. Let ai = P(ωi) and 

b = P(ω ′ ). We then have A ∪ B = {ω1, ω1 
′ , ω2, ω2 

′ , . . .} and i 

The second and third equalities above are elementary properties of infinite series 

involving nonnegative numbers (more generally of absolutely convergent infi-

nite series); namely, the order of summation or the grouping of the summands 

does not matter. 

Regarding continuity, we need to show that 
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P

∞
⋃

i=1

Bi

)

=

n
∑

−1

i=1

P(Bi) + P

∞
⋃

i=n

Bi

)

.

P

∞
⋃

i=1

Bi

)

=

∞
∑

i=1

P(Bi),

)

Ω

An ↓ Ø ⇒ P(An) → 0 .

Indeed, without loss of generality, we may assume Ω = {1, 2, . . .} is the set

of natural numbers (to be denoted in this course by either N or Z+). Fix some

ǫ > 0. Since
∑∞

i=1 P(i) =
∑

ω∈Ω P(ω) = 1 is a convergent series, it follows

that there exists some m ∈ N for which
∑

i≥m

P(i) ≤ ǫ.

))

i 1 2

P(A∪B) = a1+b1+a2+b2+· · · =
∞
∑

i=1

(ai+bi) =
∞
∑

i=1

ai+
∞
∑

i=1

bi = P(A)+P(B).



7 

On the other hand, since An ↓ Ø, it follows that for every i, there exists some ni 

such that i ∈/ An, for n ≥ ni. By using this property for i = 1, . . . ,m − 1, we 

see that 

An ⊆ {m, m + 1, . . .}, 

when n is large enough. Thus, for all large enough n, 

It follows that limn→∞ P(An) ≤ ǫ. Since ǫ can be an arbitrarily small positive 

number, we conclude that limn→∞ P(An) = 0. 

MONOTONE CLASS THEOREM 

We will soon find that one often needs to prove that a certain collection of sets 

is a σ-algebra. Such verifications are facilitated by the following theorem. 

Definition 5. A collection of sets M is a monotone class if all increasing 

and decreasing sequences of sets from M have limits belonging to M. For-

mally, let An ∈ M for all n 

An ր A ⇒ A ∈ M 
An ց A ⇒ A ∈ M. 

The minimal monotone class containing a collection C is denoted µ(C). 

Note that µ(C) is well-defined by an analog of Proposition 1 for intersections 

of monotone classes. 

Theorem 2. If A is an algebra (field) of sets, then 

µ(A) = σ(A) .

Proof. First, note that any σ-algebra is necessarily a monotone class. Thus 

µ(A) ⊆ σ(A).

Second, any collection F of sets which is simultaneously a monotone class and 
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P(An) ≤ P
(

{m,m+ 1, . . .}
)

=
∑

i≥m

P(i) ≤ ǫ .



an algebra is a σ-algebra. To see this, suppose Ak ∈ F and notice that 

Then, Bn ∈ F because F is an algebra and limn Bn ∈ F because F is a 

monotone class. 

It remains to prove that M , µ(A) is an algebra. To that end, define another 

collection of sets 

L1 , {A ∈ M | Ac ∈ M}. 
Note that clearly L1 contains A. Furthermore, for any increasing sequence 

En ր E of subsets of L1 we have E ∈ L1 since 

(En)
c ց Ec 

and M is a monotone class. Similarly, L1 is closed under decreasing limits. 

Thus L1 is a monotone class. By minimality of M = µ(A) we conclude 

L1 = M, 

and hence M is closed under taking complements. 

Proceeding in the same way, fix a set B ∈ A and define 

LB , {A ∈ M | A ∩ B ∈ M}. 

Clearly, LB contains A and is a monotone class (since An ր A ⇒ An ∩ B ր 
A ∩ B). Again, LB = M. Hence, as B was arbitrary, M is closed under taking 

intersections and (by taking complements) unions with sets from A. 

Finally, let 

L2 , {A ∈ M | A ∩ M ∈ M and A ∪ M ∈ M for all sets M ∈ M}. 

As we have shown above, L2 contains A. If An ∈ L2 and An ր A, then for 

any M we have 

An ∩ M ∈ M 
by the definition of L2 and, on the other hand, 

An ∩ M ր A ∩ M ∈ M 

since M is a monotone class. Thus A ∩ M ∈ M. Applying this argument to 

(Ac ∩ M c) ց Ac ∩ M c and noticing that M is closed under complements we n 

obtain A ∪ M ∈ M. Hence A ∈ L2 and L2 is a monotone class implying 

L2 = M 

or that M is an algebra. 
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∞
⋃

k=1

Ak = lim
n→∞

Bn , Bn ,

n
⋃

k=1

Ak.



Remark (Caution: real analysis). The importance of the monotone class theo-

rem is that it allows one to avoid the use of transfinite induction when proving 

properties of σ-algebras. However, if you understand transfinite induction many 

of the tricky constructions involving monotone classes become much less mys-

terious. For example, constructing µ(A) involves taking A, then adding all the 

limits of increasing and decreasing sets (thus forming new sets “tier 2”), then 

adding the limits of increasing and decreasing sets in tier 2 (forming “tier 3”), 

etc. Transfinite induction gives a rigorous sense to the definition, “let µ(A) be 

the first tier at which this procedure stabilizes”. Intuitively, then, µ(A) is closed 

under the operation of taking limits. Now if E is a set in any tier then E ∩ A is 

also a set in the same tier (assuming A ∈ A). Consequently, µ(A) is automat-

ically closed under intersections with sets from A. Similarly, one may replace 

A ∈ A with any A in tier 2, 3, etc – eventually proving µ(A) is closed under 

intersections. 
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