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In an earlier lecture, we worked through the bivariate normal distribution 

and its properties, relying mostly on algebraic manipulation and integration of 

normal PDFs. Here, we revisit the subject in more generality (n dimensions), 

while using more elegant tools. First, some background. 

BACKGROUND ON POSITIVE DEFINITE MATRICES. 

Definition 1. Let A be a square (n × n) symmetric matrix. 

(a) We say that A is positive definite, and write A > 0, if xT Ax > 0, for every 

nonzero x ∈ Rn . 

(b) We say that A is nonnegative definite, and write A ≥ 0, if xT Ax ≥ 0, for 

every x ∈ Rn . 

It is known (e.g., see any basic linear algebra text) that: 

(a) A symmetric matrix has n real eigenvalues. 

(b) A positive definite matrix has n real and positive eigenvalues. 

(c) A nonnegative definite matrix has n real and nonnegative eigenvalues. 

1 



(d) To each eigenvalue of a symmetric matrix, we can associate a real eigen-

vector. Eigenvectors associated with distinct eigenvalues are orthogonal; 

eigenvectors associated with repeated eigenvalues can always be taken to be 

orthogonal. Without loss of generality, all these eigenvectors can be nor-

malized so that they have unit length, resulting in an orthonormal basis. 

(e) The above essentially states that a symmetric definite matrix becomes diag-

onal after a suitable orthogonal change of basis. 

A concise summary of the above discussion is the following spectral decompo-

sition formula: Every symmetric matrix A can be expressed in the form 

n 
X 

A = �izizi
T , 

i=1 

where �1, . . . , �n are the eigenvalues of A, and z1, . . . , zn is an associated col-

lection of orthonormal eigenvectors. (Note here that zizi
T is a n × n matrix, of 

rank 1.) 

For nonnegative definite matrices, we have �i ≥ 0, which allows us to take 

square roots and define 
n 
Xp 

B = �izizi
T . 

i=1 

We then observe that: 

(a) The matrix B is symmetric. 

(b) We have B2 = A (this is an easy calculation). Thus B is a symmetric 

square root of A. 
√ 

(c) The matrix B has eigenvalues �i. Therefore, it is positive (respectively, 

nonnegative) definite if and only if A is positive (respectively, nonnegative) 

definite. 

Finally, if A is positive definite, then each �i is positive, and we can define 

the matrix 
n 
X 1 

C = ziz T . 
�i

i 

i=1 

An easy calculation shows that CA = AC = I , so that C = A−1 . 
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2 DEFINITION OF THE MULTIVARIATE NORMAL DISTRIBUTION 

Our interest in positive definite matrices stems for the following. When A is 

positive definite, the quadratic form q(x) = x T Ax goes to infinity as kxk → ∞, 

so that e−q(x) decays to zero, as kxk → ∞, and therefore can be used to define 

a multivariate PDF. 

There are multiple ways of defining multivariate normal distributions. We 

will present three, and will eventually show that they are consistent with each 

other. 

The first generalizes our definition of the bivariate normal. It is the most 

explicit and transparent; on the downside it can lead to unpleasant algebraic 

manipulations. Recall that |V | stands for the absolute value of the determinant 

of a square matrix V . 

Definition 2. A random vector X has a nondegenerate (multivariate) nor-

mal distribution if it has a joint PDF of the form 

n 1 (x − µ)T V −1(x − µ) 
fX (x) = p exp − , 

(2ˇ)n|V | 2 

for some real vector µ and some positive definite matrix V . 

The second definition is constructive, which makes it operationally useful. 

Definition 3. A random vector X has a (multivariate) normal distribution 

if it can be expressed in the form 

X = DW + µ, 

for some matrix D and some real vector µ, where W is a random vector 

whose components are independent N(0, 1) random variables. 

The last definition is possibly the hardest to penetrate, but in the eyes of 

some, it is the most elegant. 

Definition 4. A random vector X has a (multivariate) normal distribution 

if for every real vector a, the random variable a T X is normal. 
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A brief remark on the use of the word “nondegenerate” in Definition 2. Un-

der Definition 2, fX (x) > 0 for all x. On the other hand, consider the following 

example. Let X1 ∼ N(0, 1) and let X2 = 0. The random vector X = (X1,X2) 
is normal according to Definitions 3 or 4, but cannot be described by a joint 

PDF (all of the probability is concentrated on the horizontal axis, a set of zero 

area). This is an example of a degenerate normal distribution: the distribution 

is concentrated on a proper subspace of Rn . The most extreme example is a 

one-dimensional random variable, which is identically equal to zero. This qual-

ifies as normal under Definitions 3 and 4. One may question the wisdom of 

calling the number “zero” a “normal random variable;” the reason for doing so 

is that it allows us to state results such as “a linear function of a normal random 

variable is normal”, etc., without having to worry about exceptions and special 

conditions that will prevent degeneracy. 

MEANS AND COVARIANCES OF VECTOR RANDOM VARIABLES 

Let us first introduce a bit more notation. If X = (X1, . . . ,Xn) is a random 

vector, we define 

E[X] = (E[X1], . . . , E[Xn]), 

which we treat as a column vector. Similarly, If A is a random matrix (a matrix 

with each entry being a random variable Aij ), we use the notation E[A], to 

denote the matrix whose entries are E[Aij]. 
Given two random vectors X = (X1, . . . ,Xn) and Y = (Y1, . . . , Ym), we 

can consider all the possible covariances 

Cov(Xi, Yj ) = E[(Xi − E[Xi])(Yi − E[Yj])], 

and we can arrange them in a n × m covariance matrix 

Cov(X, Y) 

whose (i, j)th entry is Cov(Xi, Yj ). It is easily checked that 

h i 

Cov(X, Y) = E (X − E[X])(Y − E[Y])T . 

Notice also that Cov(X, X) is a n × n symmetric matrix. 

Exercise 1. Prove that Cov(X, X) is nonnegative definite. 
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4 KEY PROPERTIES OF THE MULTIVARIATE NORMAL 

The theorem below includes almost everything useful there is to know about 

multivariate normals. We will prove and state the theorem, while working 

mostly with Definition 3. The proof of equivalence of the three definitions will 

be completed in the next lecture, together with some additional observations. 

Theorem 1. Suppose that X = (X1, . . . ,Xn) is multivariate normal, in the 

sense of Definition 3, and let µi be the ith component of µ. 

(a) For every i, Xi is normal, with mean µi. 

(b) We have Cov(X, X) = DDT . 

(c) If C is a m × n matrix and d is a vector in Rm , then Y = CX + d is 

multivariate normal in the sense of Definition 3, with mean Cµ + d and 

covariance matrix CDDT CT . 

(d) If |D| 6= 0, then X is a nondegenerate multivariate normal in the sense of 

Definition 2, with V = DDT = Cov(X, X). 

(e) The joint CDF FX of X is completely determined by the mean and co-

variance of X. 

(f) The components of X are uncorrelated (i.e., the covariance matrix is di-

agonal) if and only if they are independent. 

(g) If 
� � �� � � 

X µX VXX ∼ N , 
Y µY VY X 

�� 

VXY , 
VY Y 

and VY Y > 0, then: 

(i) E[X | Y] = µX + VXY V 
−1(Y − µY ). Y Y 

(ii) Let X̃ = X − E[X | Y]. Then, X̃ is independent of Y, and inde-

pendent of E[X | Y]. 

˜ ˜ (iii) Cov(X̃ , X | Y) = Cov(X̃ , X) = VXX − VXY V 
−1VY X . Y Y 

Proof: 

(a) Under definition 3, Xi is a linear function of independent normal random 

variables, hence normal. Since E[W] = 0, we have E[Xi] = µi. 

(b) For simplicity, let us just consider the zero mean case. We have 

Cov(X, X) = E[XX
T ] = E[DWW

T DT ] = DE[WW
T ]DT = DDT , 
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where the last equality follows because the components of W are in-

dependent (hence the covariance matrix is diagonal), with unit variance 

(hence the diagonal entries are all equal to 1). 

(c) We have Y = CX + d = C(DW + µ) + d, which is itself a linear 

function of independent standard normal random variables. Thus, Y is 

multivariate normal. The formula for E[Y] is immediate. The formula 

for the covariance matrix follows from part (b), with D being replaced by 

(CD). 

(d) This is an exercise in derived distributions. Let us again just consider the 

case of µ = 0. We already know (Lecture 10) that when X = DW , with 

D invertible, then 
fW (D

−1x) 
fX (x) = . | det D| 

In our case, since the Wi are i.i.d. N(0,1), we have 

n o 1 1 T fW (w) = p exp − w w , 
(2ˇ)n 2 

leading to 

n o 1 1 
fX (x) = p exp − x T (D−1)T D−1 

x . 
(2ˇ)n|DDT | 2 

This is of the form given in Definition 2, with V = DDT . In conjunction 

with part (b), we also have Cov(X, X) = V . The argument for the non-

zero mean case is essentially the same. 

(e) Using part (d), the joint PDF of X is completely determined by the matrix 

V , which happens to be equal to Cov(X, X), together with the vector µ. 

The degenerate case is a little harder, because of the absence of a conve-

nient closed form formula. One could think of a limiting argument that 

involves injecting a tiny bit of noise in all directions, to make the distri-

bution nondegenerate, and then taking the limit. This type of argument 

can be made to work, but will involve tedious technicalities. Instead, we 

will take a shortcut, based on the inversion property of transforms. This 

argument is simpler, but relies on the heavy machinery behind the proof 

of the inversion property. 

s Let us find the multivariate transform MX(s) = E[e 
T x]. We note that 

T T 
X s T X is normal with mean s µ. Letting X̃ = X − µ, the variance of s 
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is 

T T 
X̃ X̃ T T 

E[X̃ ˜ T var(s X) = E[s s] = s X
T ]s = s T Cov(X, X)s = s V s. 

Using the formula for the transform of a single normal random variable 

(s T X in this case), we have 

s s µ s T V s/2 MX(s) = E[e 
T 
x] = M (1) = e 

T 
e . sT X 

Thus, µ and V completely determine the transform of X. By the inversion 

property of transforms, µ and V completely determine the distribution 

(e.g., the CDF) of X. 

(f) If the components of X are independent they are of course uncorrelated. 

For the converse, suppose that the components of X are uncorrelated, i.e., 

the matrix V is a diagonal. Consider another random vector Y that has 

the same mean and as X, whose components are independent normal, and 

such that the variance of Yi is the same as the variance of Xi. Then, X 
and Y have the same mean and covariance. By part (e), X and Y have the 

same distribution. Since the components of Y are independent, it follows 

that the components of X are also independent. 

For the special case when V is invertible, we could alternatively use part 

(d) which provides an explicit formula for the joint PDF of X. When V 

is diagonal we see that the joint PDF is the product of its marginal PDF. 

Namely fX(x) = fX1 (x1) · · · fXn (xn) and thus the components of X 
are independent. 

(g) Once more, to simplify notation, let us just deal with the zero-mean case. 

Let us define 

X̂ = VXY V 
−1

Y. Y Y 

We then have 

E[XYˆ T ] = VXY V 
−1

E[YY
T ] = VXY = E[XY

T ]. Y Y 

This proves that X − X̂ is uncorrelated with Y. Note that (X − X̂ , Y) is 

a linear function of (X, Y), so, by part (c), it is also multivariate normal. 

Using an argument similar to the one in the proof of part (f), we conclude 

that X − X̂ is independent of Y, and therefore independent from any 

function of Y. Recall now the abstract definition of conditional expecta-

tions. The relation E[(X − X̂ )g(Y)] = 0, for every function g, implies 

that X̂ = E[X | Y], which proves part (i). 
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For part (ii), note that we already proved that X̃ = X − X̂ = X − E[X | 
Y] is independent of Y. Since E[X | Y] is a function of Y, it follows 

that X̃ is independent of E[X | Y]. 

˜ For part (iii), note that X̃ is independent of Y, which implies that Cov(X̃ , X | 
Y) = Cov(X̃ , X̃ ). Finally, 

˜ Cov(X̃ , X) = E[X̃ X̃ T ] = E[(X − X̂ )(X − X̂ )T ] = E[(X − X̂ )XT ] 

= VXX − E[VXY V 
−1

YX
T ] = VXX − VXY V 

−1
E[YX

T ] Y Y Y Y 

= VXX − VXY V 
−1VY X . Y Y 

Note that in the case of the bivariate normal, we have Cov(X, Y ) = ˆ˙X ˙Y , 

VXX = ˙X 
2 , VY Y = ˙Y 

2 . Then, part (g) of the preceding theorem, for the zero-

mean case, reduces to 

E[X | Y ] = ˆ
˙X 

Y, var(X̃) = ˙X 
2 (1 − ˆ2), 

˙Y 

which agrees with the formula we derived through elementary means in Lec-

ture 9, for the special case of unit variances. 
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