MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436/15.085 Lecture 25 Lecturer: Yury Polyanskiy

Scribe: MIT Class Participants

Disclaimer: *These notes have not been subjected to the usual scrutiny reserved for formal publications. They are posted to serve class purposes.*

MARTINGALES I

Content.

- 0. Background
- 1. Martingales: definition, examples
- 2. Azuma-Hoeffding Inequality
- 3. Optional stopping theorem

0 BACKGROUND

• Recall we defined conditional expectation $V = \mathbb{E}[A|X]$ as follows:

$$\forall B = f(X), \mathbb{E}[AB] = \mathbb{E}[VB]$$

We also learned that one computes conditional expectations, usually, by integrating

$$\mathbb{E}[A|X=x] = \int_{\mathbb{R}} a P_{A|X}(da|x)$$

• We can also define conditional expectation with respect to a sigma-algebra \mathcal{F} :

 $V = \mathbb{E}[A|\mathcal{F}]$

Namely, random variable V is a conditional expectation of A given \mathcal{F} if a) $V \in \mathcal{F}$ and b) $\forall B \in \mathcal{F}$, $\mathbb{E}[AB] = \mathbb{E}[VB]$. Here we used common abuse of notation $V \in \mathcal{F}$ meaning "V is \mathcal{F} -measurable" (which, recall, means $\{V \leq v\} \in \mathcal{F}$ for every $v \in \mathbb{R}$.

• Recall $\sigma(X_0, X_1, ..., X_k) = \mathcal{F}_k$ where \mathcal{F}_k is the smallest σ -algebra containing all events $\{X_i \leq a\}$. Recall also that

$$A \in \mathcal{F}_{\parallel} \Longleftrightarrow \exists f : A = f(X_0, ..., X_k) \tag{1}$$

Given a stochastic process $X_0, X_1, ...$

$$\mathcal{F}_k = \sigma(X_0, X_1, \dots, X_k), \mathcal{F}_0 \subset \mathcal{F}_1 \subset \dots \subset \mathcal{F}_{\infty}$$

where $\mathcal{F}_{\infty} = \sigma(X_i, i \in \mathbb{Z}_+)$. The \mathcal{F}_k we have defined here is known as the **standard filtration** generated by the stochastic process. We can think about each \mathcal{F}_k as the valid questions you can ask (and answer) if you only know realization of the stochastic process up to time k.

Before we were talking about a stochastic process in isolation. Now we will talk about stochastic process being adapted to some filtration *F_k*. For simplicity, you can always think of a standard filtration generated by a mother (complicated) random process {*X_k*}. We say that *Y_k* is a stochastic process adapted to filtration *F_k* if *Y_k* ∈ *F_k* holds ∀*k* ≥ 0.

As an example, we can look at a simple process $Y_k = \operatorname{sign}(X_0 + \ldots + X_k)$. Note that $Y_k \in \mathcal{F}_k$, i.e. Y_k is \mathcal{F}_k -measurable, because it is a function of X_0, \ldots, X_k . However, knowledge of Y_0, \ldots, Y_k is insufficient to reconstruct trajectory X_0, \ldots, X_k . So while Y_k is adapted to \mathcal{F}_k , the filtration \mathcal{F}_k is much richer. This is a common situation in applications (since we are interested in functions of the mother process), and that's why we need the concept of filtration.

1 MARTINGALES

1.1 Definition

We introduce our main definition of a Martingale:

Definition 1. A process $(M_t, t = 0, ..., \infty)$ is a martingale with respect to filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset ...$ if: 1. $M_t \in \mathcal{F}_t \ \forall t \ge 0$ 2. $\mathbb{E}|M_t| < \infty$, i.e. M_t is integrable 3. $\mathbb{E}[M_t|\mathcal{F}_{t-1}] = M_{t-1}$

In the special case if $\mathcal{F}_t = \sigma(M_0, ..., M_t)$ we simply say " M_t is a martingale" (without mentioning filtration). In this case, the property 1) is automatic and being a martingale becomes essentially just the requirement that $\mathbb{E}[M_t|M_0, ..., M_{t-1}] = M_{t-1}$, for all $t \ge 1$.

1.2 History of Martingales

The word *martingale* comes from gambling. It describes a strategy in which a gambler makes a series of bets. For each bet, he wins if a coin lands on heads and loses if the coin lands on tails. For each successive loss, he doubles his bet, starting with \$1 on the first flip. At the time of winning (i.e. first time the coin lands on heads), the gambler will receive a net gain of \$1 $2^{t+1} - (1+2+...+2^t) = 1$; however the expected loss at the time of winning is ∞ .

1.3 Examples

For the following examples of martingales, we introduce the notation

$$\mathbb{E}_t[\cdot] := \mathbb{E}[\cdot|\mathcal{F}_t]$$

Example 1. $S_n = X_0 + ... + X_n$ for X_i independent and $\mathbb{E}[X_i] = 0$. $\mathcal{F}_k = \sigma(X_0, ..., X_k)$. Then, we have $\mathbb{E}_{n-1}S_n = S_{n-1}$.

Example 2. $Y_n = X_0 \cdot X_1 \cdot \ldots \cdot X_n$ for X_i independent and $\mathbb{E}[X_i] = 1$. Then, we have $\mathbb{E}_{n-1}Y_n = Y_{n-1}$.

Example 3 (Doob Martingale). Let Z be any random variable with finite expectation ($\mathbb{E}|Z| < \infty$) and \mathcal{F}_t be any filtration. We define a Doob martingale:

$$M_t = \mathbb{E}[Z|\mathcal{F}_t] \tag{2}$$

This make look like a rather special case, but it will turn out that many martingales we work with will turn out to be of this type. Think of it as if we have a "secret" Z and we are observing its average given the known information at time n. Over time, we learn more and more about this mother random variable, and approach knowing Z itself. A Doob martingale has the martingale property with respect to the given filtration:

$$\mathbb{E}_{t-1}M_t = \mathbb{E}[M_t | X_0, ..., X_{t-1}]$$

= $\mathbb{E}[\mathbb{E}[Z | X_0, ..., X_t] | X_0, ... X_{t-1}]$
= $\mathbb{E}[Z | X_0, ..., X_{t-1}]$
= M_{t-1}

where in the second line, we use the tower property of conditional expectation.

As we will see below, Examples 1 and 2 are not Doob martingales unless they converge. We can, however, modify examples 1 and 2 so that they are Doob martingales. Suppose we restrict the martingales to within a certain window, for instance S_n for n such that $-100 \le S_n \le 100$, and freeze the process once it exceeds the boundary. Then, the martingales are Doob martingales (since they ar bounded!).

2 AZUMA'S INEQUALITY

By performing a simple computation and induction, we can see that $\mathbb{E}M_t = \mathbb{E}M_0$:

$$\mathbb{E}[M_t] = \mathbb{E}[\mathbb{E}_{t-1}[M_t]]$$
$$= \mathbb{E}[M_{t-1}]$$

To compute the variance of M_t , assume without loss of generality that $\mathbb{E}[M] = 0$.

$$\operatorname{var}(M_t) = \mathbb{E}M_t^2 \tag{3}$$

$$=\mathbb{E}[M_t - M_{t-1} + M_{t-1}]^2 \tag{4}$$

$$= \mathbb{E}[\mathbb{E}_{t-1}[(M_t - M_{t-1})^2 + M_{t-1}^2 + 2M_{t-1}(M_t - M_{t-1})]]$$
(5)

$$= \mathbb{E}[M_{t-1}^2] + \mathbb{E}[M_t - M_{t-1}]^2$$
(6)

$$=\sum_{s=1}^{t} \mathbb{E}[M_s - M_{s-1}]^2 + \operatorname{var}(M_0)$$
(7)

We obtain (5) by using the tower property of conditional expectation and we use the following simplification to obtain (6):

$$\mathbb{E}_{t-1}[M_{t-1}(M_t - M_{t-1})] = M_{t-1}(\mathbb{E}[M_t - M_{t-1}]) = 0$$

Finally, we obtain (7) by induction.

From this derivation, we can see that $|M_s - M_{s-1}| \le c \Rightarrow \operatorname{var} M_t \le c^2 t$. Martingales with bounded increments (within a constant c) grow with speed $\sim \sqrt{t}$. This leads us to the Azuma-Hoeffding inequality.

Theorem 1 (Azuma-Hoeffding Inequality). If M_t is a martingale with $|M_t - M_{t-1}| \le c_t$ a.s. $\forall t$, then

$$\mathbb{P}(M_t - \mathbb{E}[M_t] > h) \le \exp\left(\frac{-h^2}{2 - \frac{t}{s=1}c_s^2}\right)$$

Proof. From Chernoff bound, we have $\mathbb{P}[\cdot] \leq e^{-\lambda h + \psi_t(\lambda)} \quad \forall \lambda > 0$ where $\psi_t(\lambda) = \ln \mathbb{E}[e^{\lambda M_t}]$ is the log MGF. Without loss of generality, we are assuming $\mathbb{E}M = 0$.

It is sufficient to prove that $\psi_t(\lambda) \leq \psi_{t-1}(\lambda) + \frac{\lambda^2 c_t^2}{2}$. We can rewrite the following expression:

$$\mathbb{E}_{t-1}e^{\lambda M_t} = \mathbb{E}_{t-1}e^{\lambda (M_t - M_{t-1})}e^{\lambda M_{t-1}}$$

 $\forall |x| \leq c_t$:

$$e^{\lambda x} \le e^{-\lambda c_t} + (x+c_t) \frac{(e^{\lambda c_t} - e^{-\lambda c_t})}{2c_t}$$

Plugging in $x = M_t - M_{t-1}$.

$$\mathbb{E}_{t-1}e^{\lambda(M_t - M_{t-1})} \le \frac{e^{-\lambda c_t} + e^{\lambda c_t}}{2}$$

because $\mathbb{E}_{t-1}(M_t - M_{t-1}) = 0$. Finally, using the fact that

$$\frac{e^{-p} + e^p}{2} \le e^{\frac{p^2}{2}},$$

which can be checked using Matlab/Python, and substituting $p = \lambda c_t$, we get

$$\mathbb{E}_{t-1}e^{\lambda(M_t-M_{t-1})} \le \frac{e^{-\lambda c_t} + e^{\lambda c_t}}{2} \le e^{\frac{\lambda^2 c_t^2}{2}}$$

Example 4. Suppose we throw M balls into n bins. Let V be the number of occupied bins. Let us define a process:

$$M_t \triangleq \mathbb{E}[V|X_1, ..., X_t] \tag{8}$$

where X_i is the bin selected by the *i*th ball. We can see that this process is a Doob martingale becase we are conditioning on increasing σ -algebras. Intuitively, we can see that at any step of the process, the conditional expectation

will not change by more than 1: $|M_t - M_{t-1}| \le 1$. Thus, we have by Azuma-Hoeffding:

$$\mathbb{P}[|V - \mathbb{E}V| > h] \le e^{\frac{-h^2}{2M}}$$

This example demonstrates that, even if the exact mean is unknown, we can already guarantee that the distribution of V concentrates sharply around its mean. So all complexity of understanding V boils down to computing its expectation (which, in turn, can be done by sampling a few realizations, thanks to the concentration phenomenon).

3 OPTIONAL STOPPING THEOREM

Recall the following definition of the stopping time of a filtration:

Definition 2. $\tau : \Omega \to \mathbb{Z}_+ \cup \{+\infty\}$ is a stopping time of filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset ...$ if $\{\tau \leq n\} \in \mathcal{F}_n \ \forall n \iff \{\tau = n\} \in \mathcal{F}_n \ \forall n$

Now, using the notation $a \wedge b = \min(a, b)$, let us define $Y_t = M_{\tau \wedge t}$. Think of this as a process that has values M_t until time τ and then has constant value M_{τ} . We are essentially defining a new process that follows the trajectory of M_t but then freezes once it reaches τ . For instance, we could define $\tau = \inf\{t : |M_t| \ge 100\}$.

Theorem 2. $Y_t = M_{\tau \wedge t}$ is a martingale for any martingale M_t and stopping time τ .

Proof.

$$Y_t = \sum_{r=0}^{t-1} M_r \mathbb{1}\{\tau = r\} + M_t \mathbb{1}\{\tau \ge t\}$$

Note that $\{\tau \ge t\} = \{\tau \le t-1\}^c \in \mathcal{F}_{t-1}$, so $\mathbb{E}_{t-1} \sum_{r=0}^{t-1} M_t \mathbb{1}\{\tau = r\} = \sum_{r=0}^{t-1} M_t \mathbb{1}\{\tau = r\}$. Substituting this, we get

$$\mathbb{E}_{t-1}Y_t = \sum_{\substack{r=0\\r=0}}^{t-1} M_t \mathbb{1}\{\tau = r\} + (\mathbb{E}_{t-1}M_t)\mathbb{1}\{\tau \ge t\}$$
$$= \sum_{\substack{r=0\\r=0}}^{t-1} M_t \mathbb{1}\{\tau = r\} + M_{t-1}\mathbb{1}\{\tau \ge t\}$$
$$= M_{(t-1)\wedge\tau}$$

where the equation from the first to the second line follows from $\mathbb{E}_{t-1}M_t = M_{t-1}$. We are done with the proof.

This relates to the efficient market hypothesis: the price of a stock should be a martingale (with respect to filtration generated by all public information). Indeed, in this case defining a smart stopping time one is unable to improve the average price still.

Now we return to the idea of uniform integrability and introduce the crucial concept of a **uniformly integrable martingale (uim**). First we consider a very useful and simple criterion for getting a wealth of uims.

Proposition 1. Let M_t be a martingale, τ be a stopping time such that $\mathbb{E}\tau < \infty$, and $\mathbb{E}_{t-1}|M_t - M_{t-1}| \leq c$ a.s., then $Y_t \triangleq M_{t \wedge \tau}$ is a uniformly integrable Martingale.

Proof.

$$\begin{aligned} Y_t - Y_0 &| \leq \sum_{s=1}^{t} |Y_s - Y_{s-1}| \\ &= \sum_{s=1}^{t} |M_s - M_{s-1}| \mathbb{1}\{\tau \geq s\} \\ &\leq \sum_{s=1}^{\infty} |M_s - M_{s-1}| \mathbb{1}\{\tau \geq s\} =: W \end{aligned}$$

The conditions imply

$$\mathbb{E}W < \infty \Rightarrow |Y_t| \le W + |Y_0| \ \forall t$$

We will see in the next lecture that every u.i.m. \iff Doob Martingale. In particular, every bounded martingale is Doob. For now we state the crown jewel of martingale theory:

Theorem 3 (Optional stopping theorem). Let M_t be a uniformly integrable Martingale and let τ be a stopping time such that $\mathbb{P}[\tau < \infty] = 1$. Then:

$$\mathbb{E}M_{\tau} = \mathbb{E}M_0$$

Proof. We first prove a special case: Suppose $\tau \leq L$ a.s. where L is some constant. Then:

$$M_{\tau} = \sum_{t=0}^{L} M_t \mathbb{1}\{\tau = t\}$$
(9)

$$= \sum_{t=0}^{L} (\mathbb{E}_{t} M_{L}) \mathbb{1}\{\tau = t\}$$
(10)

$$=\sum_{t=0}^{L} \mathbb{E}_t M_L \mathbb{1}\{\tau=t\}$$
(11)

The key insight to obtain (10) was to use the property of martingales from part 3 of the definition. Now, we can take the expected value of both sides of (11):

$$\mathbb{E}M_{\tau} = \sum_{t} \mathbb{E}M_{L}\mathbb{1}\{\tau = t\}$$
(12)

$$=\mathbb{E}M_L \tag{13}$$

$$=\mathbb{E}M_0\tag{14}$$

Note that (12) forms a partition because $\sum_t \mathbb{1}\{\tau = t\} = 1$ a.s. Note that a similar argument shows

$$\mathbb{E}|M_{\tau}| \le \mathbb{E}|M_L|$$

Indeed, one only needs to notice that $|\mathbb{E}_t M_L| \leq \mathbb{E}_t |M_L|$.

The general case follows in two steps. First define $\tau_L = \tau \wedge L$, then by the previous argument we have

$$\mathbb{E}|M_{\tau_L}| \le \sup_L \mathbb{E}|M_L| < \infty \,,$$

where the last inequality follows from uniform integrability (which implies uniform boundedness). So since $M_{\tau_L} \to M_{\tau}$ as $L \to \infty$ almost surely, we have via Fatou's lemma

$$\mathbb{E}|M_{\tau}| < \infty$$

Finally,

$$M_{\tau} = M_{\tau_L} + (M_{\tau} - M_{\tau_L}) \mathbf{1} \{ \tau \ge L \}$$

By the first part of the proof $\mathbb{E}[M_{\tau_L}] = \mathbb{E}[M_0]$. So we only need to show that as $L \to \infty$ the expectation of the second term vanishes.

Note that as $L \to \infty$ we have $\mathbb{P}[\tau \ge L] \to 0$. Thus $\mathbb{E}[|M_{\tau}|1\{\tau \ge L\}] \to 0$. Similarly, from uniform integrability of $\{M_L\}$ we have $\mathbb{E}[|M_{\tau_L}|1\{\tau \ge L\}] = \mathbb{E}[|M_L|1\{\tau \ge L\}] \to 0$. This completes the proof.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>