MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436/15.085 Lecture 25

Lecturer: Yury Polyanskiy
Scribe: MIT Class Participants
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They are posted to serve class purposes.

MARTINGALES I

Content.

0. Background
1. Martingales: definition, examples
2. Azuma-Hoeffding Inequality
3. Optional stopping theorem

0 BACKGROUND

- Recall we defined conditional expectation $V=\mathbb{E}[A \mid X]$ as follows:

$$
\forall B=f(X), \mathbb{E}[A B]=\mathbb{E}[V B]
$$

We also learned that one computes conditional expectations, usually, by integrating

$$
\mathbb{E}[A \mid X=x]=\int_{\mathbb{R}} a P_{A \mid X}(d a \mid x)
$$

- We can also define conditional expectation with respect to a sigma-algebra \mathcal{F} :

$$
V=\mathbb{E}[A \mid \mathcal{F}]
$$

Namely, random variable V is a conditional expectation of A given \mathcal{F} if a) $V \in \mathcal{F}$ and b) $\forall B \in \mathcal{F}, \mathbb{E}[A B]=\mathbb{E}[V B]$. Here we used common abuse of notation $V \in \mathcal{F}$ meaning " V is \mathcal{F}-measurable" (which, recall, means $\{V \leq v\} \in \mathcal{F}$ for every $v \in \mathbb{R}$.

- Recall $\sigma\left(X_{0}, X_{1}, \ldots, X_{k}\right) \quad \mathcal{F}_{k}$ where \mathcal{F}_{k} is the smallest σ-algebra containing all events $\left\{X_{i} \leq a\right\}$. Recall also that

$$
\begin{equation*}
A \in \mathcal{F}_{\|} \Longleftrightarrow \exists f: A=f\left(X_{0}, \ldots, X_{k}\right) \tag{1}
\end{equation*}
$$

Given a stochastic process X_{0}, X_{1}, \ldots

$$
\mathcal{F}_{k}=\sigma\left(X_{0}, X_{1}, \ldots, X_{k}\right), \mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots \subset \mathcal{F}_{\infty}
$$

where $\mathcal{F}_{\infty}=\sigma\left(X_{i}, i \in \mathbb{Z}_{+}\right)$. The \mathcal{F}_{k} we have defined here is known as the standard filtration generated by the stochastic process. We can think about each \mathcal{F}_{k} as the valid questions you can ask (and answer) if you only know realization of the stochastic process up to time k.

- Before we were talking about a stochastic process in isolation. Now we will talk about stochastic process being adapted to some filtration \mathcal{F}_{k}. For simplicity, you can always think of a standard filtration generated by a mother (complicated) random process $\left\{X_{k}\right\}$. We say that Y_{k} is a stochastic process adapted to filtration \mathcal{F}_{k} if $Y_{k} \in \mathcal{F}_{k}$ holds $\forall k \geq 0$.

As an example, we can look at a simple process $Y_{k}=\operatorname{sign}\left(X_{0}+\ldots+X_{k}\right)$. Note that $Y_{k} \in \mathcal{F}_{k}$, i.e. Y_{k} is \mathcal{F}_{k}-measurable, because it is a function of $X_{0}, \ldots X_{k}$. However, knowledge of Y_{0}, \ldots, Y_{k} is insufficient to reconstruct trajectory X_{0}, \ldots, X_{k}. So while Y_{k} is adapted to \mathcal{F}_{k}, the filtration \mathcal{F}_{k} is much richer. This is a common situation in applications (since we are interested in functions of the mother process), and that's why we need the concept of filtration.

1 MARTINGALES

1.1 Definition

We introduce our main definition of a Martingale:
Definition 1. A process $\left(M_{t}, t=0, \ldots, \infty\right)$ is a martingale with respect to filtration $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots$ if:

1. $M_{t} \in \mathcal{F}_{t} \forall t \geq 0$
2. $\mathbb{E}\left|M_{t}\right|<\infty$, i.e. M_{t} is integrable
3. $\mathbb{E}\left[M_{t} \mid \mathcal{F}_{t-1}\right]=M_{t-1}$

In the special case if $\mathcal{F}_{t}=\sigma\left(M_{0}, \ldots, M_{t}\right)$ we simply say " M_{t} is a martingale" (without mentioning filtration). In this case, the property 1) is automatic and being a martingale becomes essentially just the requirement that $\mathbb{E}\left[M_{t} \mid M_{0}, \ldots, M_{t-1}\right]=M_{t-1}$, for all $t \geq 1$.

1.2 History of Martingales

The word martingale comes from gambling. It describes a strategy in which a gambler makes a series of bets. For each bet, he wins if a coin lands on heads and loses if the coin lands on tails. For each successive loss, he doubles his bet, starting with $\$ 1$ on the first flip. At the time of winning (i.e. first time the coin lands on heads), the gambler will receive a net gain of $\$ 12^{t+1}-(1+2+\ldots+$ $\left.2^{t}\right)=1$; however the expected loss at the time of winning is ∞.

1.3 Examples

For the following examples of martingales, we introduce the notation

$$
\mathbb{E}_{t}[\cdot]:=\mathbb{E}\left[|\cdot| \mathcal{F}_{t}\right]
$$

Example 1. $S_{n}=X_{0}+\ldots+X_{n}$ for X_{i} independent and $\mathbb{E}\left[X_{i}\right]=0 . \mathcal{F}_{k}=$ $\sigma\left(X_{0}, \ldots, X_{k}\right)$. Then, we have $\mathbb{E}_{n-1} S_{n}=S_{n-1}$.

Example 2. $Y_{n}=X_{0} \cdot X_{1} \cdot \ldots \cdot X_{n}$ for X_{i} independent and $\mathbb{E}\left[X_{i}\right]=1$. Then, we have $\mathbb{E}_{n-1} Y_{n}=Y_{n-1}$.

Example 3 (Doob Martingale). Let Z be any random variable with finite expectation $(\mathbb{E}|Z|<\infty)$ and \mathcal{F}_{t} be any filtration. We define a Doob martingale:

$$
\begin{equation*}
M_{t}=\mathbb{E}\left[Z \mid \mathcal{F}_{t}\right] \tag{2}
\end{equation*}
$$

This make look like a rather special case, but it will turn out that many martingales we work with will turn out to be of this type. Think of it as if we have a "secret" Z and we are observing its average given the known information at time n. Over time, we learn more and more about this mother random variable, and approach knowing Z itself. A Doob martingale has the martingale property with respect to the given filtration:

$$
\begin{aligned}
\mathbb{E}_{t-1} M_{t} & =\mathbb{E}\left[M_{t} \mid X_{0}, \ldots, X_{t-1}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[Z \mid X_{0}, \ldots, X_{t}\right] \mid X_{0}, \ldots X_{t-1}\right] \\
& =\mathbb{E}\left[Z \mid X_{0}, \ldots, X_{t-1}\right] \\
& =M_{t-1}
\end{aligned}
$$

where in the second line, we use the tower property of conditional expectation.

As we will see below, Examples 1 and 2 are not Doob martingales unless they converge. We can, however, modify examples 1 and 2 so that they are Doob martingales. Suppose we restrict the martingales to within a certain window, for instance S_{n} for n such that $-100 \leq S_{n} \leq 100$, and freeze the process once it exceeds the boundary. Then, the martingales are Doob martingales (since they ar bounded!).

2 AZUMA'S INEQUALITY

By performing a simple computation and induction, we can see that $\mathbb{E} M_{t}=$ $\mathbb{E} M_{0}$:

$$
\begin{aligned}
\mathbb{E}\left[M_{t}\right] & =\mathbb{E}\left[\mathbb{E}_{t-1}\left[M_{t}\right]\right] \\
& =\mathbb{E}\left[M_{t-1}\right]
\end{aligned}
$$

To compute the variance of M_{t}, assume without loss of generality that $\mathbb{E}[M]=0$.

$$
\begin{align*}
\operatorname{var}\left(M_{t}\right) & =\mathbb{E} M_{t}^{2} \tag{3}\\
& =\mathbb{E}\left[M_{t}-M_{t-1}+M_{t-1}\right]^{2} \tag{4}\\
& =\mathbb{E}\left[\mathbb{E}_{t-1}\left[\left(M_{t}-M_{t-1}\right)^{2}+M_{t-1}^{2}+2 M_{t-1}\left(M_{t}-M_{t-1}\right)\right]\right] \tag{5}\\
& =\mathbb{E}\left[M_{t-1}^{2}\right]+\mathbb{E}\left[M_{t}-M_{t-1}\right]^{2} \tag{6}\\
& =\sum_{s=1}^{t} \mathbb{E}\left[M_{s}-M_{s-1}\right]^{2}+\operatorname{var}\left(M_{0}\right) \tag{7}
\end{align*}
$$

We obtain (5) by using the tower property of conditional expectation and we use the following simplification to obtain (6):

$$
\mathbb{E}_{t-1}\left[M_{t-1}\left(M_{t}-M_{t-1}\right)\right]=M_{t-1}\left(\mathbb{E}\left[M_{t}-M_{t-1}\right]\right)=0
$$

Finally, we obtain (7) by induction.
From this derivation, we can see that $\left|M_{s}-M_{s-1}\right| \leq c \Rightarrow \operatorname{var} M_{t} \leq c^{2} t$. Martingales with bounded increments (within a constant c) grow with speed $\sim \sqrt{t}$. This leads us to the Azuma-Hoeffding inequality.

Theorem 1 (Azuma-Hoeffding Inequality). If M_{t} is a martingale with $\mid M_{t}-$ $M_{t-1} \mid \leq c_{t}$ a.s. $\forall t$, then

$$
\mathbb{P}\left(M_{t}-\mathbb{E}\left[M_{t}\right]>h\right) \leq \exp \left(\frac{-h^{2}}{2 t_{s=1}^{t} c_{s}^{2}}\right)
$$

Proof. From Chernoff bound, we have $\mathbb{P}[\cdot] \leq e^{-\lambda h+\psi_{t}(\lambda)} \forall \lambda>0$ where $\psi_{t}(\lambda)=$ $\ln \mathbb{E}\left[e^{\lambda M_{t}}\right]$ is the \log MGF. Without loss of generality, we are assuming $\mathbb{E} M=$ 0.

It is sufficient to prove that $\psi_{t}(\lambda) \leq \psi_{t-1}(\lambda)+\frac{\lambda^{2} c_{t}^{2}}{2}$.
We can rewrite the following expression:

$$
\mathbb{E}_{t-1} e^{\lambda M_{t}}=\mathbb{E}_{t-1} e^{\lambda\left(M_{t}-M_{t-1}\right)} e^{\lambda M_{t-1}}
$$

$\forall|x| \leq c_{t}:$

$$
e^{\lambda x} \leq e^{-\lambda c_{t}}+\left(x+c_{t}\right) \frac{\left(e^{\lambda c_{t}}-e^{-\lambda c_{t}}\right)}{2 c_{t}}
$$

Plugging in $x=M_{t}-M_{t-1}$.

$$
\mathbb{E}_{t-1} e^{\lambda\left(M_{t}-M_{t-1}\right)} \leq \frac{e^{-\lambda c_{t}}+e^{\lambda c_{t}}}{2}
$$

because $\mathbb{E}_{t-1}\left(M_{t}-M_{t-1}\right)=0$. Finally, using the fact that

$$
\frac{e^{-p}+e^{p}}{2} \leq e^{\frac{p^{2}}{2}}
$$

which can be checked using Matlab/Python, and substituting $p=\lambda c_{t}$, we get

$$
\mathbb{E}_{t-1} e^{\lambda\left(M_{t}-M_{t-1}\right)} \leq \frac{e^{-\lambda c_{t}}+e^{\lambda c_{t}}}{2} \leq e^{\frac{\lambda^{2} c_{t}^{2}}{2}}
$$

Example 4. Suppose we throw M balls into n bins. Let V be the number of occupied bins. Let us define a process:

$$
\begin{equation*}
M_{t} \triangleq \mathbb{E}\left[V \mid X_{1}, \ldots, X_{t}\right] \tag{8}
\end{equation*}
$$

where X_{i} is the bin selected by the $i^{\text {th }}$ ball. We can see that this process is a Doob martingale becase we are conditioning on increasing σ-algebras. Intuitively, we can see that at any step of the process, the conditional expectation
will not change by more than 1: $\left|M_{t}-M_{t-1}\right| \leq 1$. Thus, we have by AzumaHoeffding:

$$
\mathbb{P}[|V-\mathbb{E} V|>h] \leq e^{\frac{-h^{2}}{2 M}}
$$

This example demonstrates that, even if the exact mean is unknown, we can already guarantee that the distribution of V concentrates sharply around its mean. So all complexity of understanding V boils down to computing its expectation (which, in turn, can be done by sampling a few realizations, thanks to the concentration phenomenon).

3 OPTIONAL STOPPING THEOREM

Recall the following definition of the stopping time of a filtration:
Definition 2. $\tau: \Omega \rightarrow \mathbb{Z}_{+} \cup\{+\infty\}$ is a stopping time of filtration $\mathcal{F}_{0} \subset$ $\mathcal{F}_{1} \subset \ldots$ if

$$
\{\tau \leq n\} \in \mathcal{F}_{n} \forall n \Longleftrightarrow\{\tau=n\} \in \mathcal{F}_{n} \forall n
$$

Now, using the notation $a \wedge b=\min (a, b)$, let us define $Y_{t}=M_{\tau \wedge t}$. Think of this as a process that has values M_{t} until time τ and then has constant value M_{τ}. We are essentially defining a new process that follows the trajectory of M_{t} but then freezes once it reaches τ. For instance, we could define $\tau=\inf \{t$: $\left.\left|M_{t}\right| \geq 100\right\}$.

Theorem 2. $Y_{t}=M_{\tau \wedge t}$ is a martingale for any martingale M_{t} and stopping time τ.

Proof.

$$
Y_{t}=\sum_{r=0}^{t-1} M_{r} \mathbb{1}\{\tau=r\}+M_{t} \mathbb{1}\{\tau \geq t\}
$$

Note that $\{\tau \geq t\}=\{\tau \leq t-1\}^{c} \in \mathcal{F}_{t-1}$, so $\mathbb{E}_{t-1} \sum_{r=0}^{t-1} M_{t} \mathbb{1}\{\tau=r\}=$ $\sum_{r=0}^{t-1} M_{t} \mathbb{1}\{\tau=r\}$. Substituting this, we get

$$
\begin{aligned}
\mathbb{E}_{t-1} Y_{t} & =\sum_{r=0}^{t-1} M_{t} \mathbb{1}\{\tau=r\}+\left(\mathbb{E}_{t-1} M_{t}\right) \mathbb{1}\{\tau \geq t\} \\
& =\sum_{r=0}^{t-1} M_{t} \mathbb{1}\{\tau=r\}+M_{t-1} \mathbb{1}\{\tau \geq t\} \\
& =M_{(t-1) \wedge \tau}
\end{aligned}
$$

where the equation from the first to the second line follows from $\mathbb{E}_{t-1} M_{t}=$ M_{t-1}. We are done with the proof.

This relates to the efficient market hypothesis: the price of a stock should be a martingale (with respect to filtration generated by all public information). Indeed, in this case defining a smart stopping time one is unable to improve the average price still.

Now we return to the idea of uniform integrability and introduce the crucial concept of a uniformly integrable martingale (uim). First we consider a very useful and simple criterion for getting a wealth of uims.

Proposition 1. Let M_{t} be a martingale, τ be a stopping time such that $\mathbb{E} \tau<$ ∞, and $\mathbb{E}_{t-1}\left|M_{t}-M_{t-1}\right| \leq c$ a.s., then $Y_{t} \triangleq M_{t \wedge \tau}$ is a uniformly integrable Martingale.

Proof.

$$
\begin{aligned}
\left|Y_{t}-Y_{0}\right| & \leq \sum_{s=1}^{t}\left|Y_{s}-Y_{s-1}\right| \\
& =\sum_{s=1}^{t}\left|M_{s}-M_{s-1}\right| \mathbb{1}\{\tau \geq s\} \\
& \leq \sum_{s=1}^{\infty}\left|M_{s}-M_{s-1}\right| \mathbb{1}\{\tau \geq s\}=: W
\end{aligned}
$$

The conditions imply

$$
\mathbb{E} W<\infty \Rightarrow\left|Y_{t}\right| \leq W+\left|Y_{0}\right| \forall t
$$

We will see in the next lecture that every u.i.m. \Longleftrightarrow Doob Martingale. In particular, every bounded martingale is Doob. For now we state the crown jewel of martingale theory:

Theorem 3 (Optional stopping theorem). Let M_{t} be a uniformly integrable Martingale and let τ be a stopping time such that $\mathbb{P}[\tau<\infty]=1$. Then:

$$
\mathbb{E} M_{\tau}=\mathbb{E} M_{0}
$$

Proof. We first prove a special case: Suppose $\tau \leq L$ a.s. where L is some constant. Then:

$$
\begin{align*}
M_{\tau} & =\sum_{t=0}^{L} M_{t} \mathbb{1}\{\tau=t\} \tag{9}\\
& =\sum_{t=0}^{L}\left(\mathbb{E}_{t} M_{L}\right) \mathbb{1}\{\tau=t\} \tag{10}\\
& =\sum_{t=0}^{L} \mathbb{E}_{t} M_{L} \mathbb{1}\{\tau=t\} \tag{11}
\end{align*}
$$

The key insight to obtain (10) was to use the property of martingales from part 3 of the definition. Now, we can take the expected value of both sides of (11):

$$
\begin{align*}
\mathbb{E} M_{\tau} & =\sum_{t} \mathbb{E} M_{L} \mathbb{1}\{\tau=t\} \tag{12}\\
& =\mathbb{E} M_{L} \tag{13}\\
& =\mathbb{E} M_{0} \tag{14}
\end{align*}
$$

Note that (12) forms a partition because $\sum_{t} \mathbb{1}\{\tau=t\}=1$ a.s.
Note that a similar argument shows

$$
\mathbb{E}\left|M_{\tau}\right| \leq \mathbb{E}\left|M_{L}\right|
$$

Indeed, one only needs to notice that $\left|\mathbb{E}_{t} M_{L}\right| \leq \mathbb{E}_{t}\left|M_{L}\right|$.
The general case follows in two steps. First define $\tau_{L}=\tau \wedge L$, then by the previous argument we have

$$
\mathbb{E}\left|M_{\tau_{L}}\right| \leq \sup _{L} \mathbb{E}\left|M_{L}\right|<\infty,
$$

where the last inequality follows from uniform integrability (which implies uniform boundedness). So since $M_{\tau_{L}} \rightarrow M_{\tau}$ as $L \rightarrow \infty$ almost surely, we have via Fatou's lemma

$$
\mathbb{E}\left|M_{\tau}\right|<\infty .
$$

Finally,

$$
M_{\tau}=M_{\tau_{L}}+\left(M_{\tau}-M_{\tau_{L}}\right) 1\{\tau \geq L\}
$$

By the first part of the proof $\mathbb{E}\left[M_{\tau_{L}}\right]=\mathbb{E}\left[M_{0}\right]$. So we only need to show that as $L \rightarrow \infty$ the expectation of the second term vanishes.

Note that as $L \rightarrow \infty$ we have $\mathbb{P}[\tau \geq L] \rightarrow 0$. Thus $\mathbb{E}\left[\left|M_{\tau}\right| 1\{\tau \geq L\}\right] \rightarrow 0$. Similarly, from uniform integrability of $\left\{M_{L}\right\}$ we have $\mathbb{E}\left[\left|M_{\tau_{L}}\right| 1\{\tau \geq L\}\right]=$ $\mathbb{E}\left[\left|M_{L}\right| 1\{\tau \geq L\}\right] \rightarrow 0$. This completes the proof.

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

