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1 USEFUL INEQUALITIES 

Markov inequality: If X is a nonnegative random variable, then P(X ≥ a) ≤ 
E[X]/a. 

Proof: Let I be the indicator function of the event {X ≥ a}. Then, aI ≤ X. 

Taking expectations of both sides, we obtain the claimed result. 
� � 

Chebyshev inequality: P |X − E[X]| ≥ ǫ ≤ var(X)/ǫ2 . 

Proof: Apply the Markov inequality, to the random variable |X − E[X]|2 , and 

with a = ǫ2 . 

2 CONVERGENCE IN DISTRIBUTION vs CHARACTERISTIC FUNC-

TIONS 

We know that equality of two characteristic functions implies equality of the 

corresponding distributions. It is then plausible to hope that “near-equality” of 

characteristic functions implies “near equality” of corresponding distributions. 

This would be essentially a statement that the mapping from characteristic func-

tions to distributions is a continuous one. 
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Theorem 1. Continuity of inverse transforms: Let X and Xn be random 

variables with given CDFs and corresponding characteristic functions. We 

have 
d 

[φXn (t) → φX (t), ∀ t] ⇒ [Xn → X]. 

Proof. First, suppose that we are in the special situation that all |φXn (t)| ≤ 
g(t) where g(t) is positive and integrable (on R) function. Then, the inverse 

Fourier transform exists and we conclude that each Xn and X in such a case 

must possess a pdf (i.e. Xn’s and X are all continuous random variables) given 

by 
Z 

1 −itxφXn fXn (x) = e (t)dt 
2π R 

and similarly for fX . By the DCT we conclude that 

fXn (x) → fX (x) 

for every x. It will be shown later (in the lecture on uniform integrability) that 

convergence of pdfs implies convergence in distribution. 

Second, to reduce to a special case proven above, notice the following: If Zǫ 

is a collection of random variables (independent of Xn,X) such that P[|Zǫ| ≤ 
ǫ] = 1 then 

∀ǫ > 0 Xn + Zǫ →d 
Xn ⇐⇒ Xn →d 

X . (1) 

Finally, notice that if we take Zǫ to have triangular pdf 

 
1 

 (x + ǫ), x ∈ (−ǫ, 0] 
 ǫ2 

1 fZǫ (x) = 
ǫ2 (ǫ − x), x ∈ (0, ǫ) 

 


0, o/w 

4 sin2(tǫ/2) const then φZǫ (t) = 
t2ǫ2 ≤ (a calculation). Since φXn+Zǫ = φXn φZǫ 1+ǫ2t2 

we see that sequence of random variables Xn + Zǫ satisfies conditions of the 

special case above. Application of (1) completes the proof. 

The preceding theorem involves two separate conditions: (i) the sequence 

of characteristic functions φXn converges (pointwise), and (ii) the limit is the 

characteristic function associated with some other random variable. If we are 

only given the first condition (pointwise convergence), how can we tell if the 

limit is indeed a legitimate characteristic function associated with some random 
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variable? One way is to check for various properties that every legitimate char-

acteristic function must possess. One such property is continuity: if t → t� , 
then (using dominated convergence), 

itX ] = E[e it
�X ] = φX (t

�). lim φX (t) = lim E[e 
t!t� t!t� 

It turns out that continuity at zero is all that needs to be checked. 

Theorem 2. Continuity of inverse transforms: Let Xn be random vari-

ables with characteristic functions φXn , and suppose that the limit φ(t) = 
limn!1 φXn (t) exists for every t. Then, either 

(i) The function φ is discontinuous at zero (in this case Xn does not converge 

in distribution); or 

(ii) The function φ is continuous at zero, there exists a random variable X 
d 

whose characteristic function is φ, and Xn → X. 

To illustrate the two possibilities in Theorem 2, consider a sequence {Xn}, 

and assume that Xn is exponential with parameter λn, so that φXn (t) = λn/(λn− 
it). 

(a) Suppose that λn converges to a positive number λ. Then, the sequence of 

characteristic functions φXn converges to the function φ defined by φ(t) = 
λ/(λ−it). We recognize this as the characteristic function of an exponential 

distribution with parameter λ. In particular, we conclude that Xn converges 

in distribution to an exponential random variable with parameter λ. 

(b) Suppose now that λn converges to zero. Then, 
� 

λn λ 1, if t = 0, 
lim φXn (t) = lim = lim = 
n!1 n!1 λn − it λ#0 λ − it 0, if t 6= 0. 

Thus, the limit of the characteristic functions is discontinuous at t = 0, 

and Xn does not converge in distribution. Intuitively, this is because the 

distribution of Xn keeps spreading in a manner that does not yield a limiting 

distribution. 

Proof. We only need to show (ii). The main step is to show that if φ is 

continuous at zero, then collection of measures {PXn , n = 1, 2, . . .} is tight. 

Indeed, from tightness and Prokhorov’s criterion we conclude that there exists 

a convergent subsequence PXnk 
→ PX and since φnk → φ the characteris-

tic function of PX is precisely φ, and thus PX is identified uniquely. A short 

argument (Exercise!) shows that then we must have PXn → PX . 
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Showing that continuity of φ implies tightness requires the following (Fourier-

analytic) trick: Tails of the distribution can be read off the small-neighborhood 

averages of φ around 0. Formally, we have 

Lemma 1. Let Y have characteristic function φY then for all a > 0: 
� � 

Z a 1 7 
P |Y | ≥ ≤ [1 − Re φY (t)]dt 

a a 0 

Lemma indeed implies tightness: From continuity of φ for every ǫ > 0 there 

exists small enough a > 0 such that 
Z a 1 ǫ 

(1 − Re φ(t))dt < 
a 2 0 

and from the DCT there is also an n0 such that for all n ≥ n0 we have 
Z Z a a 1 1 ǫ 

(1 − Re φn(t))dt ≤ (1 − Re φ(t)) + ≤ ǫ . 
a a 2 0 0 

Finally, we may take A ≥ a such that 

sup P[|Xn| ≥ A] ≤ ǫ 
n�n0 

to conclude the tightness of the whole of {PXn }. 

It remains to prove the Lemma. Roughly, the idea is the following. Let Y 
have PDF fY with mass δ > 0 outside [−A, A]. Then φY is a Fourier transform 

of fY . It is well-known that multiplication of functions corresponds to convolu-

tion of Fourier transforms, and vice-versa. Thus, we conclude that 1 φY ∗1(−ǫ,ǫ) 2ǫ 
sin ǫx is a Fourier transform of fY (x) · . However, note that sin ǫx kills the tails of ǫx ǫx 

fY and hence the Fourier transform of the product evaluated at zero should be 
δ around 1 − ǫA . 

Rigorously, from 

1 − Re φY (t) = E[1 − cos(tY )] 

by Fubini we have 
Z Z a a 1 1 

[1 − Re φY (t)]dt = E [1 − costY ]dt (2) 
a a 0 0 

� � 
sin aY 

= E 1 − (3) 
aY 

� � 
1 ≥ (1 − sin 1)P |Y | ≥ , (4) 
a 

where in the last step we used the fact that 1 − sin u is a non-negative function, u 
exceeding (1 − sin 1) for |u| > 1. From (4) lemma follows by noting (1 − 

1 sin 1) > 7 . This concludes the proof of Lemma and Theorem. 
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3 THE WEAK LAW OF LARGE NUMBERS 

Intuitively, an expectation can be thought of as the average of the outcomes over 

an infinite repetition of the same experiment. If so, the observed average in a 

finite number of repetitions (which is called the sample mean) should approach 

the expectation, as the number of repetitions increases. This is a vague state-

ment, which is made more precise by so-called laws of large numbers. 

Theorem 3. (Weak law of large numbers) Let Xn be a sequence of i.i.d. 

random variables, and assume that E[|X1|] < ∞. Let Sn = X1 + · · · + Xn. 

Then, 
Sn i.p. → E[X1]. 
n 

This is called the “weak law” in order to distinguish it from the “strong 
a.s. 

law” of large numbers, which asserts, under the same assumptions, that Xn → 
E[X1]. Of course, since almost sure convergence implies convergence in proba-

bility, the strong law implies the weak law. On the other hand, the weak law can 

be easier to prove, especially in the presence of additional assumptions. Indeed, 

in the special case where the Xi have mean µ and finite variance, Chebyshev’s 

inequality yields, for every ǫ > 0, 

� � var(Sn/n) var(X1) 
P |(Sn/n) − µ| ≥ ǫ ≤ = , (5) 

ǫ2 nǫ2 

which converges to zero, as n → ∞, thus establishing convergence in probabil-

ity. 

Historical note: WLLN has been one of the focal points of the develop-

ment of the probability theory. Reader is welcome to muse upon the math-

ematical progress made since 1713, when J. Bernoulli proved WLLN for iid 

Xj ∼ Bern(p). It took him 20 years (his own account) and he referred to it 

as his “Golden Theorem”. The simple proof (5) under finite variance only ap-

peared in Chebyshev’s work in 1867 (who used an inequality due to Bienaymé, 

which we now call Chebyshev’s). In 1913 A. Markov organized a big celebra-

tion on the occasion of 200’th anniversary of LLN. The final form of the WLLN 

as given in Theorem 3 was obtained by Khintchine in 1929. For more history 

see [3]. 

Before we proceed to the proof for the general case, we note two important 

facts that we will use. 
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(a) First-order Taylor series expansion. Let g : R → R be a function that has 

a derivative at zero, denoted by d. Let h be a function that represents the 

error in a first order Taylor series approximation: 

g(ǫ) = g(0) + dǫ + h(ǫ). 

By the definition of the derivative, we have 

g(ǫ) − g(0) dǫ + h(ǫ) h(ǫ) 
d = lim = lim = d + lim . 

ǫ!0 ǫ ǫ!0 ǫ ǫ!0 ǫ 

Thus, h(ǫ)/ǫ converges to zero, as ǫ → 0. A function h with this property 

is often written as o(ǫ). This discussion also applies to complex-valued 

functions, by considering separately the real and imaginary parts. 

(b) A classical sequence. Recall the well known fact 

� �n a a lim 1 + = e , a ∈ R. (6) 
n!1 n 

We note (without proof) that this fact remains true even when a is a complex 

number. Furthermore, with little additional work, it can be shown that if 

{an} is a sequence of complex numbers that converges to a, then, 

� �n an a lim 1 + = e . 
n!1 n 

Proof of Theorem 3: Let µ = E[X1]. Fix some t ∈ R. Using the assumption 

that the Xi are independent, and the fact that the derivative of φX1 at t = 0 
equals iµ, the characteristic function of Sn/n is of the form 

� �n 
� �n � �n µit itX1 /n] φn(t) = E[e = φX1 (t/n) = 1 + + o(t/n) , 

n 

where the function o satisfies limǫ!0 o(ǫ)/ǫ = 0. Therefore, 

iµt lim φXn (t) = e , ∀ t. 
n!1 

iµt We recognize e as the characteristic function associated with a random vari-

able which is equal to µ, with probability one. 

Applying Theorem 1 from the previous lecture (continuity of inverse trans-

forms), we conclude that Sn/n converges to µ, in distribution. Furthermore, 

as mentioned in the previous lecture, convergence in distribution to a constant 

implies convergence in probability. 

6 



4 

Remark: It turns out that the assumption E[|X1|] < ∞ can be relaxed, although 

not by much. Suppose that the distribution of X1 is symmetric around zero. It is 

known that Sn/n → 0, in probability, if and only if limn!1 nP(|X1| > n) = 0. 

There exist distributions that satisfy this condition, while E[|X1|] = ∞. On the 

other hand, it can be shown that any such distribution satisfies E[|X1|1−ǫ] < ∞, 

for every ǫ > 0, so the condition limn!1 nP(|X1| > n) = 0 is not much 

weaker than the assumption of a finite mean. 

THE CENTRAL LIMIT THEOREM 

Suppose that X1,X2, . . . are i.i.d. with common (and finite) mean µ and variance 

σ2 . Let Sn = X1 + · · · + Xn. The central limit theorem (CLT) asserts that 

Sn − nµ √ 
σ n 

converges in distribution to a standard normal random variable. For a discussion 

of the uses of the central limit theorem, see the handout from [BT] (pages 388-

394). 

Proof of the CLT: For simplicity, suppose that the random variables Xi have 

zero mean and unit variance. Finiteness of the first two moments of X1 implies 

that φX1 (t) is twice differentiable at zero. The first derivative is the mean (as-

sumed zero), and the second derivative is −E[X2] (assumed equal to one), and 

we can write 

φX (t) = 1 − t2/2 + o(t2), 

where o(t2) indicates a√function such that o(t2)/t2 → 0, as t → 0. The charac-

teristic function of Sn/ n is of the form 

� � 
� √ � t2 n n 
φX (t/ n) = 1 − + o(t2/n) . 

2n 

−t2/2 For any fixed t, the limit as n → ∞ is e , which is the characteristic function 

φZ of a standard normal random variable Z . Since φSn/
p
n(t) → φZ (t) for √ 

every t, we conclude that Sn/ n converges to Z , in distribution. 

The central limit theorem, as stated above, does not give any information on 

the PDF or PMF of Sn. However, some further refinements are possible, under 

some additional assumptions. We state, without proof, two such results. 

R 
(a) Suppose that |φX1 (t)|r dt < ∞, for some positive integer r. Then, Sn is 

a continuous random variable for every n ≥ r, and the PDF fn of (Sn − 
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�

�

�

�

�

�

√ 
µn)/(σ n) converges pointwise to the standard normal PDF: 

1 −z2/2 lim fn(z) = √ e , ∀ z. 
n!1 2π 

In fact, convergence is uniform over all z: 

1 −z2/2 lim sup fn(z) − √ e = 0. 
n!1 z 2π 

(b) Suppose that Xi is a discrete random variable that takes values of the form 

a+kh, where a and h are constants, and k ranges over the integers. Suppose 

furthermore that X has zero mean and unit variance. Then, for any z of the √ √ 
form z = (na +kh)/ n (these are the possible values of Sn/ n), we have 

√ 
n 1 −z2/2 lim P(Sn = z) = e . 

n!1 h 2π 

4.1 Berry-Esseen theorem 

It turns out that CDF of normalized sums approaches the CDF of standard nor-

mal uniformly on all of R with speed p 1 : 
n 

� � 
Sn − nµ const 

P √ ≤ λ = �(λ) ± √ ∀λ . 
σ n n 

The following is a precise version. Just like for the CLT there are great many 

refinements and extensions. For proof see e.g. Theorem 2, Chapter XVI.5 in [1]. 

Theorem 4 (Berry-Esseen). Let Xk, k = 1, . . . , n be independent (possibly not 
identically distributed) with 

µk = E[Xk] , (7) 

σ2 
k = var[Xk] , (8) 

tk = E[|Xk − µk|3] , (9) 
n 
X 

σ2 = σ2 
k , (10) 

k=1 
n 
X 

T = tk . (11) 

k=1 
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�

�

�

�

�

�

�

�

Then for any 1 −∞ < λ < ∞ 
" # 

n 
X 6T 

P (Xk − µk) ≤ λσ − �(λ) ≤ , 
σ3 

k=1 

(12) 

whree � is the CDF of N (0, 1). 
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