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1 COMMENTS  ON  EXPECTED  VALUES

! 
(a) Recall that E[X] is well defined unless both sums x:x<0 xpX (x) and 

! 
x:x>0 xpX (x) are infinite. Furthermore, E[X] is well-defined and finite if 

and only if both sums are finite. This is the same as requiring that 

" 
E[|X|] = |x|pX (x) < ∞. 

x 

Random variables that satisfy this condition are called integrable. 

(b) Note that for any random variable X, E[X2] is always well-defined (whether
! 2 finite or infinite), because all the terms in the sum x pX (x) are nonneg-x 

ative. If we have E[X2] < ∞, we  say  that  X is square integrable.

2 (c) Using the inequality |x| ≤ 1 + x , we  have  E[|X|] ≤ 1 + E[X2], which

shows that a square integrable random variable is always integrable. Simi-

larly, for every positive integer r, if  E[|X|r] is finite then it is also finite for

every l < r  (fill details).
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Exercise 1. Recall that the r-the central moment of a random variable X is 
E[(X − E[X])r]. Show  that  if  the  r-th central moment of an almost surely 
non-negative random variable X is finite, then its l-th central moment is 
also finite for every l < r. 

(d) Because of the formula var(X) = E[X2]− (E[X])2, we  see  that:  (i)  if  X is 
square integrable, the variance is finite; (ii) if X is integrable, but not square 
integrable, the variance is infinite; (iii) if X is not integrable, the variance is 
undefined. 

2 EXPECTED  VALUES  OF  SOME  COMMON  RANDOM  VARIABLES  

In this section, we use either the definition or the properties of  expectations to  
calculate the mean and variance of a few common discrete random variables. 

(a) Bernoulli(p). Let X be a Bernoulli random variable with parameter p. 
Then, 

E[X] = 1 · p+ 0 · (1− p) = p, 
2 2 2 var(X) = E[X2]− (E[X])2 = 1  · p+ 0  · (1− p)− p = p(1− p). 

(b) Binomial(n, p). Let X be a binomial random variable with parameters n 
!n and p. We  note  that  X can be expressed in the form X = Xi, where  i=1 

X1, . . . ,Xn are independent Bernoulli random variables with a common 
parameter p. It  follows  that  

n 
" 

E[X] =  E[Xi] = np. 
i=1 

Furthermore, using the independence of the random variables Xi, we  have  

n 
" 

var(X) =  var(Xi) = np(1− p). 
i=1 

(c) Geometric(p). Let X be a geometric random variable with parameter p. 
!∞ We will use the formula E[X] =  n=0 P(X > n). We  observe  that  

∞ 
" 

n 
P(X > n) =  (1− p)j−1 p = (1− p) , 

j=n+1 
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which implies that 
∞ 
" 1 n 

E[X] =  (1− p) = . 
p 

n=0 

The variance of X is given by 

1− p 
var(X) =  , 

p2 

but we defer the derivation to a later section. 

(d) Poisson(λ). Let X be a Poisson random variable with parameter λ. A  direct  
calculation yields 

∞ 
" λn 

−λ 
E[X] = e n 

n! 
n=0 
∞ 
" λn 

−λ = e n 
n! 

n=1 
∞ 
" λn 

−λ = e 
(n − 1)! 

n=1 
∞ 
" λn 

−λ = λe 
n! 

n=0 

= λ. 

The variance of X turns out to satisfy var(X) = λ, but  we  defer  the  deriva-

tion to a later section. We note, however, that the mean and the variance  of  a  
Poisson random variable are exactly what one would expect, on the  basis  of  
the formulae for the mean and variance of a binomial random variable, and 
taking the limit as n → ∞, p → 0, while  keeping  np fixed at λ. 

(e) Power(α). Let X be a random variable with a power law distribution with 
parameter α. We  have  

∞ ∞ 
" " 1 

E[X] =  P(X > k) =  . 
α (k + 1)  

k=0 k=0 

If α ≤ 1, the  expected  value  is  seen  to  be  infinite.  For  α > 1, the  sum  
is finite, but a closed form expression is not available; it is known as the 
Riemann zeta function, and is denoted by ζ(α). 
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3 COVARIANCE  AND  CORRELATION  

3.1 Covariance 

The covariance of two square integrable random variables X and Y is denoted 
by cov(X, Y ), and  is  defined  by  

# 
cov(X, Y ) = E X − E[X] Y − E[Y ] . 

When cov(X, Y ) = 0, we  say  that  X and Y are uncorrelated. 
Note that, under the square integrability assumption, the covariance is al-

ways well-defined and finite. This is a consequence of the fact that |XY | ≤ 
(X2 + Y 2)/2, which  implies  that  XY , as  well  as  (X − E[X])(Y − E[Y ]), are  
integrable. 

Roughly speaking, a positive or negative covariance indicates that the values 
of X − E[X] and Y − E[Y ] obtained in a single experiment “tend” to have the 
same or the opposite sign, respectively. Thus, the sign of the covariance  provides  
an important qualitative indicator of the relation between X and Y . 

We record a few properties of the covariance, which are immediate conse-

quences of its definition: 

(a) cov(X, X) = var(X); 

(b) cov(X, Y + a) = cov(X, Y ); 

(c) cov(X, Y ) = cov(Y, X); 

(d) cov(X, aY + bZ) = a · cov(X, Y ) + b · cov(X, Z). 

An alternative formula for the covariance is 

cov(X, Y ) = E[XY ]− E[X]E[Y ], 

as can be verified by a simple calculation. Recall from last lecture that if X 
and Y are independent, we have E[XY ] =  E[X]E[Y ], which  implies  that  
cov(X, Y ) = 0. Thus,  if  X and Y are independent, they are also uncorrelated. 
However, the reverse is not true, as illustrated by the following example. 

Example. Suppose that the pair of random variables (X, Y ) takes the values (1, 0), 
(0, 1), (−1, 0), and  (0, −1), each  with  probability  1/4.  Thus, the  marginal  PMFs  of  X 
and Y are symmetric around 0, and E[X ] =  E[Y ] = 0. Furthermore, for all possible 
value pairs (x, y), either  x or y is equal to 0, which implies that XY  = 0 and E[XY  ] =  
0. Therefore, 

cov(X, Y ) = E[XY  ]− E[X ]E[Y ] = 0, 

and X and Y are uncorrelated. However, X and Y are not independent since, for 
example, a nonzero value of X fixes the value of Y to zero. 
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3.2 Variance of the sum of random variables 

The covariance can be used to obtain a formula for the variance of  the  sum  of

several (not necessarily independent) random variables. In particular,  if  X1,X2, 
. . . ,Xn are random variables with finite variance, we have 

var(X1 + X2) =  var(X1) +  var(X2) + 2cov(X1,X2), 

and, more generally, 

n n n−1 n 
" " " " 

var Xi = var(Xi) + 2 cov(Xi,Xj ). 
i=1 i=1 i=1 j=i+1 

This can be seen from the following calculation, where for brevity, we denote 
X̃i = Xi − E[Xi]: 

⎡ ⎤

n n 2 
" " 

⎣ ˜ ⎦var Xi = E Xi 

i=1 i=1 
⎡ ⎤ 

n n 
"" 

= E ⎣ X̃iX̃j ⎦ 

i=1 j=1 

n n 
"" 

= E[X̃iX̃j ] 
i=1 j=1 

n 
# n−1 n 

" " " 
= E X̃ 2 + 2 E[X̃iX̃j ] i 

i=1 i=1 j=i+1 

n n−1 n 
" " " 

= var(Xi) + 2 cov(Xi,Xj ). 
i=1 i=1 j=i+1 

3.3 Correlation coefficient 

The correlation coefficient ρ(X,Y ) of two random variables X and Y that 
have nonzero and finite variances is defined as 

(The simpler notation ρ will also be used when X and Y are clear from the 
context.) It may be viewed as a normalized version of the covariance cov(X,Y ). 
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Theorem 1. Let X and Y be discrete random variables with positive vari-

ance, and correlation coefficient equal to ρ. 

(a) We have −1 ≤ ρ ≤ 1.

(b) We have ρ = 1 (respectively, ρ = −1) if and  only  if there  exists  a  positive

(respectively, negative) constant a such that Y −E[Y ] = a(X−E[X]), with

probability 1.

The proof of Theorem 1 relies on the Schwarz (or Cauchy-Schwarz) inequal-

ity, given below. 

Proposition 1. (Cauchy-Schwarz inequality) For any two random vari-

ables, X and Y , with  finite  variance,  we  have  

2 
E[XY ] ≤ E[X2]E[Y 2]. 

Proof: Let us assume that E[Y 2] ≠ 0; otherwise,  we  have  Y = 0 with probabil-

ity 1, and hence E[XY ] = 0, so  the  inequality  holds.  We  have  

2 

2 
i.e., E[XY ] ≤ E[X2]E[Y 2].

Proof of Theorem 1: 

(a) Let X̃ = X − E[X] and Ỹ = Y − E[Y ]. Using  the  Schwarz  inequality,  we

0 ≤ E

[

(

X −
E[XY ]

E[Y 2]
Y

)2
]

= E

[

X2 − 2
E[XY ]

E[Y 2]
XY +

(

E[XY ]
)2

(

E[Y 2]
)2 Y 2

]

= E[X2]− 2
E[XY ]

E[Y 2]
E[XY ] +

(

E[XY ]
)2

( )2 E[Y 2]
E[Y 2]

= E[X2]−

(

E[XY ]
)2

E[Y 2]
,

(

ρ(X,Y )
)2

=

get
(

E[X̃Ỹ ]
)2

E[X̃2]E[Ỹ 2]
≤ 1,

and hence |ρ(X,Y )| ≤ 1.
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(b) One direction is straightforward. If Ỹ = aX̃, then

E[Xa˜ X̃ ] a 
ρ(X, Y ) =  ⎡ = , 

|a| 
E[X̃2]E[(aX̃)2] 

which equals 1 or −1 depending on whether a is positive or negative. 
2 

To establish the reverse direction, let us assume that ρ(X, Y ) = 1, which
2 

implies that E[X̃2]E[Ỹ 2] =  E[X̃Ỹ ] . Using  the  inequality  established  in
the proof of Proposition 1, we conclude that the random variable 

˜ E[X̃Ỹ ] ˜ X − Y 
E[Ỹ 2] 

is equal to zero, with probability 1. It follows that, with probability 1, 

⎤ 
Y ] 

X̃ = 
E[X̃ ˜ 

Ỹ = 
E[X̃2]

ρ(X, Y )Y .˜ 
E[Ỹ 2] E[Ỹ 2] 

Note that the sign of the constant ratio of X̃ and Ỹ is determined by the sign 
of ρ(X, Y ), as  claimed.  

Example. Consider n independent tosses of a coin with probability of a head equal to 
p. Let  X and Y be the numbers of heads and of tails, respectively, and let us look at the
correlation coefficient of X and Y . Here,  we  have  X +Y = n, and  also  E[X ]+E[Y ] =
n. Thus,

X − E[X ] =  − Y − E[Y ] . 

We will calculate the correlation coefficient of X and Y , and  verify  that  it  is  indeed
equal to −1. 
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We have

cov(X,Y ) = E

[

(

X − E[X ]
)(

Y − E[Y ]
)

]

[

( )2
]

= −E X − E[X ]

= −var(X).

Hence, the correlation coefficient is

ρ(X,Y ) =
cov(X,Y )

√

var(X)var(Y )
=

−var(X)
√

var(X)var(X)
= −1.



4 INDICATOR  VARIABLES  AND  THE  INCLUSION-EXCLUSION  FOR-

MULA 

Indicator functions are special discrete random variables that can be useful in 
simplifying certain derivations or proofs. In this section, we  develop  the  inclusion-

exclusion formula and apply it to a matching problem. 
Recall that with every event A, we  can  associate  its  indicator function, 

which is a discrete random variable IA : Ω → {0, 1}, defined  by  IA(ω) = 1 if 
ω ∈ A, and  IA(ω) = 0 otherwise. Note that IAc = 1 − IA and that E[IA] =
P(A). These  simple  observations,  together  with  the  linearity  of  expectations 
turn out to be quite useful. 

4.1 The inclusion-exclusion formula 

Note that IA∩B = IAIB , for  every  A,B ∈ F . Therefore,

IA∪B = 1− I(A∪B)c = 1− IAc∩Bc = 1− IAc IBc 

= 1− (1− IA)(1− IB ) = IA + IB − IAIB . 

Taking expectations of both sides, we obtain 

P(A ∪ B) = P(A) + P(B)− P(A ∩ B), 

an already familiar formula. 
We now derive a generalization, known as the inclusion-exclusion formula. 

Suppose we have a collection of events Aj , j = 1, . . . , n, and  that  we  are  inter-

ested in the probability of the event B = ∪j
n 
=1Aj . Note  that  

n 
⎣ 

IB = 1− (1− IAj ). 
j=1 

We begin with the easily verifiable fact that for any real numbers a1, . . . , an, we

have 

n 
⎣ " " " 

(1− aj ) =1− aj + aiaj − aiaj ak
j=1 1≤j≤n 1≤i<j≤n 1≤i<j<k≤n 

n + · · ·+ (−1) a1 · · · an.

We replace aj by IAj , and  then  take  expectations  of  both  sides,  to  obtain
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" " " 
P(B) = P(Aj )− P(Ai ∩ Aj ) + P(Ai ∩ Aj ∩ Ak) 

1≤j≤n 1≤i<j≤n 1≤i<j<k≤n 

n+1 − · · · + (−1) P(A1 ∩ · · · ∩ An).

4.2 The matching problem 

Suppose that n people throw their hats in a box, where n ≥ 2, and  then  each

person picks one hat at random. (Each hat will be picked by exactly one person.) 
We interpret “at random” to mean that every permutation of the n hats is equally 
likely, and therefore has probability 1/n!. 

In an alternative model, we can visualize the experiment sequentially: the 
first person picks one of the n hats, with all hats being equally likely; then, 
the second person picks one of the remaining n − 1 remaining hats, with every 
remaining hat being equally likely, etc. It can be verified that under this second 
model, every permutation has probability 1/n!, so  the  two  models  are  equivalent.  

We are interested in the mean, variance, and PMF of a random variable X, 
defined as the number of people that get back their own hat.1 This problem is 
best approached using indicator variables. 

For the ith person, we introduce a random variable Xi that takes the value 1 
if the person selects his/her own hat, and takes the value 0 otherwise. Note that 

X = X1 +X2 + · · · +Xn. 

Since P(Xi = 1) = 1/n and P(Xi = 0) = 1− 1/n, the  mean  of  Xi is 

1 1 1 
E[Xi] = 1 · + 0 · 

n 
1− 

n 
= , 

n 

which implies that 

1 
E[X] = E[X1] + E[X2] + · · ·+ E[Xn] = n · = 1. 

n 

In order to find the variance of X, we  first  find  the  variance  and  covariances

of the random variables Xi. We  have  

1 1 
var(Xi) = 1− . 

n n 

1For more results on various extensions of the matching problem, see L.A. Zager and G.C. 
Verghese, “Caps and robbers: what can you expect?,” College Mathematics Journal, v.  38,  n.  3,

2007, pp. 185-191. 
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For i ≠ j, we  have

# 
cov(Xi,Xj ) =  E Xi − E[Xi] Xj − E[Xj ] 

= E[XiXj ]− E[Xi]E[Xj ] 

= P(Xi = 1 and Xj = 1)− P(Xi = 1)P(Xj = 1)

= P(Xi = 1)P(Xj = 1 | Xi = 1)− P(Xi = 1)P(Xj = 1)
1 1 1 

= · −
2 n n− 1 n 

1 
= . 

n2(n− 1) 

Therefore, 

n 
" 

var(X) =  var Xi

i=1 

n n−1 n 
" " " 

= var(Xi) + 2 cov(Xi,Xj ) 
i=1 i=1 j=i+1 

1 1 n(n− 1) 1 
= n · 1− + 2 · · 

n n 2 n2(n− 1) 
= 1. 

Finding the PMF of X is a little harder. Let us first dispense with some 
easy cases. We have P(X = n) = 1/n!, because  there  is  only  one  (out  of

the n! possible) permutations under which every person receives their own hat. 
Furthermore, the event X = n− 1 is impossible: if n− 1 persons have received 
their own hat, the remaining person must also have received their own hat. 

Let us continue by finding the probability that X = 0. Let  Ai be the event 
that the ith person gets their own hat, i.e., Xi = 1. Note  that  the  event  X = 0

c is the same as the event ∩iA . Thus,  P(X = 0) = 1 − P(∪i
n 
=1Ai). Using  thei 

inclusion-exclusion formula, we have 
" " " 

P(∪n
i=1Ai) = P(Ai)− P(Ai ∩ Aj ) + P(Ai ∩ Aj ∩ Ak) + · · ·  . 

i i<j i<j<k 

Observe that for every fixed distinct indices i1, i2, . . . , ik, we  have

1 1 1 (n − k)! 
P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) =  · · · ·  = . (1) 

n n− 1 n− k + 1 n! 

10 

( )

( )



� � � � � �

� �

Thus, 

1 n (n− 2)! n (n− 3)! n (n− n)! n 
P(∪i=1Ai) =  n · − + + · · ·+ (−1)n+1

n 2 n! 3 n! n n! 
1 1 

= 1  − + − · · ·+ (−1)n+1 1 
. 

2! 3! n! 

We conclude that 

1 1 1 
P(X = 0)  = − + · · ·+ (−1)n . (2) 

2! 3! n! 

−1 Note that P(X = 0)  → e , as  n → ∞. 
To conclude, let us now fix some integer r, with  0 < r  ≤ n−2, and  calculate  

P(X = r). The  event  {X = r} can only occur as follows: for some subset S of 
{1, . . . , n}, of  cardinality  r, the  following  two  events,  BS and CS , occur:  

BS : for every i ∈ S, person  i receives their own hat; 

CS : for every i /∈ S, person  i does not receive their own hat. 

We then have 
⎦ 

{X = r} = BS ∩ CS . 
S: |S|=r 

The events BS ∩ CS for different subsets S are disjoint. Furthermore, by sym-

metry, P(BS ∩ CS ) is the same for every S of cardinality r. Thus,  

" 
P(X = r) = P(BS ∩ CS ) 

S: |S|=r 

n 
= P(BS ) P(CS | BS). 

r 

Note that 
(n − r)! 

P(BS ) =  , 
n! 

by the same argument as in Eq. (1). Conditioned on the event that the r persons 
in the set S have received their own hats, the event CS will materialize if and 
only if none of the remaining n − r persons receive their own hat. But this is 
the same situation as the one analyzed when we calculated the probability that 
X = 0, except  that  n needs to be replaced by n− r. We  conclude  that  

1 1 1 
P (CS | BS ) = − + · · ·+ (−1)n−r . 

2! 3! (n − r)! 

11 
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Putting everything together, we conclude that 

Note that for each fixed r, the  probability  P(X = r) converges to e−1/r!, 
as n → ∞, which  corresponds  to  a  Poisson  distribution  with  parameter 1.  An

intuitive justification is as follows. The random variables Xi are not independent 
(in particular, their covariance is nonzero). On the other hand, as n → ∞, they

are “approximately independent”. Furthermore, the success probability  for  each

person is 1/n, and  the  situation  is  similar  to  the  one  in  our  earlier  proof  that the 
binomial PMF approaches the Poisson PMF. 

5 CONDITIONAL  EXPECTATIONS

We have already defined the notion of a conditional PMF, pX | Y ( · | y), given

the value of a random variable Y . Similarly,  given  an  event  A, we  can  define  a
conditional PMF pX|A, by  letting  pX|A(x) =  P(X = x |A). In  either  case,  the

conditional PMF, as a function of x, is  a  bona  fide  PMF  (a  nonnegative  function

that sums to one). As such, it is natural to associate a (conditional) expectation 
to the (conditional) PMF. 

Definition 1. Given an event A, such  that  P(A) > 0, and  a  discrete  random  
variable X, the  conditional expectation of X given A is defined as 

" 
E[X |A] = xpX | A(x), 

x 

provided that the sum is well-defined. 

Note that the preceding also provides a definition for a conditional expecta-

tion of the form E[X |Y = y], for  any  y such that pY (y) > 0: just  let  A be the 
event {Y = y}, which  yields  

E[X |Y = y] =
" 

xpX | Y (x | y). 
x 

We note that the conditional expectation is always well defined when either 
the random variable X is nonnegative, or when the random variable X is inte-

grable. In particular, whenever E[|X|] < ∞, we  also  have  E[|X| |Y = y] < ∞, 
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P(X = r) =

(

n

r

)

(n− r)!

n!

( 1

2!
−

1

3!
+ · · · + (−1)n−r 1

(n− r)!

)

=
1

r!

( 1

2!
−

1

3!
+ · · ·+ (−1)n−r 1

(n− r)!

)

.



for every y such that pY (y) > 0. To  verify  the  latter  assertion,  note  that  for

every y such that pY (y) > 0, we  have  

" " "pX,Y (x, y) 1 E[|X|] 
|x|pX|Y (x | y) = |x| ≤ |x|pX (x) = . 

pY (y) pY (y) pY (y) x x x 

The converse, however, is not true: it is possible that E[|X| |Y = y] is finite 
for every y that has positive probability, while E[|X|] = ∞. This  is  left  as  an

exercise. 
The conditional expectation is essentially the same as an ordinary expecta-

tion, except that the original PMF is replaced by the conditional PMF. As such, 
the conditional expectation inherits all the properties of ordinary expectations 
(cf. Proposition 4 in the notes for Lecture 6). 

5.1 The total expectation theorem 

A simple  calculation  yields  
" " " 

E[X |Y = y]pY (y) = xpX|Y (x | y)pY (y) 
y y x 

" " 
= xpX,Y (x, y) 

y x 

= E[X]. 

Note that this calculation is rigorous if X is nonnegative or integrable. 
Suppose now that {Ai} is a countable family of disjoint events that forms a 

partition of the probability space Ω. Define  a  random  variable  Y by letting Y = i 
if and only if Ai occurs. Then, pY (i) = P(Ai), and  E[X |Y = i] = E[X |Ai], 
which yields 

" 
E[X] = E[X |Ai]P(Ai). 

i 

Example. (The mean of the geometric.) Let X be a random variable with parameter p, 
k−1 so that pX (k) = (1−p) p, for  p ∈ N. We  first  observe  that  the  geometric  distribution

is memoryless: for k ∈ N, we  have  

P(X = k + 1, X  >  1) 
P(X − 1 = k | X >  1) = 

P(X >  1) 

P(X = k + 1)  
= 

P(X >  1) 
k (1− p) p k−1 = = (1− p) p 

1− p 
= P(X = k). 
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In words, in a sequence of repeated i.i.d., trials, given that the  first trial  was  a  failure,
the distribution of the remaining trials, X − 1, until  the  first  success  is  the  same  as  the
unconditional distribution of the number of trials, X , until  the  first  success.  In  particular,
E[X − 1 | X >  1] = E[X ]. 

Using the total expectation theorem, we can write 

E[X ] =  E[X | X >  1]P(X >  1)+E[X | X = 1]P(X = 1)  =  (1+E[X ])(1−p)+1 ·p. 

We solve for E[X ], and  find  that  E[X ] = 1/p. 
Similarly, 

E[X2] =  E[X2 | X >  1]P(X >  1) + E[X2 | X = 1]P(X = 1). 

Note that 

E[X2 | X >  1] = E[(X −1)2 | X >  1]+E[2(X −1)+1 | X >  1] = E[X2]+(2/p)+1. 

Thus, 
E[X2] =  (1  − p)(E[X2] +  (2/p) +  1)  +  p, 

which yields 

E[X2] =
p 
2 
2 
− 

1 
p
. 

We conclude that 

2 2 1 1 1 − p 
var(X) =  E[X2] − E[X ] = − − = . 

p2 p p2 p2

Example. Suppose we flip a biased coin N times, independently, where N is a Poisson 
random variable with parameter λ. The  probability  of  heads  at  each  flip  is  p. Let  X be 
the number of heads, and let Y be the number of tails. Then, 

∞ n 
" " n 

E[X | N = n] = mP(X = m | N = n) = m p m(1 − p)n−m . 
m 

m=0 m=0 

But X is just the expected number of heads in n trials, so that E[X | N = n] =  np. 
Let us now calculate E[N | X = m]. We  have

∞ 
" 

E[N | X = m] = nP(N = n | X = m) 
n=0 
∞ 
" P(N = n, X = m)

= n 
P(X = m) 

n=m 
∞ 
" P(X = m | N = n)P(N = n)

= n 
P(X = m) 

n=m 
∞ n −λ 
" pm(1 − p)n−m(λn/n!)e 

m = n . 
P(X = m) 

n=m 
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Recall that X = Pois(λp), so  that  P(X = m) =  e−λp(λp)m/m!. Thus,  after  some
cancellations, we obtain 

∞ 
" n−mλn−m −λ(1−p)(1− p) e 

E[N | X = m] = n 
(n − m)! 

n=m 
∞
"

n−mλn−m −λ(1−p)(1− p) e 
= (n − m) 

(n − m)! 
n=m 

∞ 
" n−mλn−m −λ(1−p)(1− p) e 

+m
(n − m)! 

n=m 

= λ(1− p) +m. 

A faster  way  of  obtaining  this  result  is  as  follows.  From  Theorem 3 in the notes for 
Lecture 6, we have that X and Y are independent, and that Y is Poisson with parameter 
λ(1 − p). Therefore,  

E[N | X = m] = E[X | X = m] + E[Y | X = m] = m + E[Y ] = m + λ(1 − p). 

Exercise. (Simpson’s “paradox”) Let S be an event and X, Y discrete random variables, 
all defined on a common probability space. Show that 

P[S|X = 0, Y  = y] > P[S|X = 1, Y  = y] 

does not imply 
P[S|X = 0] ≥ P[S|X = 1] . 

Thus in a clinical trial comparing two treatments (indexed by X) a  drug  can  be  more

successful on each group of patients (indexed by Y ) yet  be  less  successful  overall.  

5.2 The conditional expectation as a random variable 

Let X and Y be two discrete random variables. For any fixed value of y, the

expression E[X | Y = y] is a real number, which however depends on y, and

can be used to define a function φ : R → R, by  letting  φ(y) =  E[X | Y = y]. 
Consider now the random variable φ(Y ); this  random  variable  takes  the  value

E[X | Y = y] whenever Y takes the value y, which  happens  with  probability

P(Y = y). This  random  variable  will  be  denoted  as  E[X | Y ]. (Strictly  speak-

ing, one needs to verify that this is a measurable function, which is left as an 
exercise.) 

Example. Let us return to the last example and find E[X | N ] and E[N | X ]. We  found
that E[X | N = n] = np. Thus  E[X | N ] = Np, i.e.,  it  is  a  random  variable  that  takes
the value np with probability P(N = n) = (λn/n!)e−λ. We  found  that  E[N | X = 
m] = λ(1− p) +m. Thus  E[N | X ] = λ(1 − p) +X .

15 
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Note further that 

E[E[X | N ]] = E[Np] =  λp = E[X ], 

and 
E[E[N | X ]] = λ(1 − p) +  E[X ] =  λ(1 − p) +  λp = λ = E[N ]. 

This is not a coincidence; the equality E[E[X | Y ]] = E[X ] is always true, as we shall 
now see. In fact, this is just the total expectation theorem, written in more abstract 
notation. 

Theorem 2. Let g : R → R be a measurable function such that Xg(Y ) is 
either nonnegative or integrable. Then, 

E E[X | Y ]g(Y ) = E[Xg(Y )]. 

In particular, by letting g(y) = 1  for all y, we  obtain  E[E[X|Y ]] = E[X]. 

Proof: We have 
" 

E E[X|Y ]g(Y ) = E[X | Y = y]g(y)pY (y) 
y 
"" 

= xpX|Y (x | y)g(y)pY (y) 
y x 
" 

= xg(y)pX,Y (x, y) =  E[Xg(Y )]. 
x,y 

The formula in Theorem 2 can be rewritten in the form 

(3) 

Here is an interpretation. We can think of E[X | Y ] as an estimate of X, on  the

basis of Y , and  E[X | Y ] − X as an estimation error. The above formula says 
that the estimation error is uncorrelated with every function of the original data. 

Equation (3) can be used as the basis for an abstract definition of  conditional

expectations. Namely, we define the conditional expectation as  a  random  vari-

able of the form φ(Y ), where  φ is a measurable function, that has the property 

E (φ(Y ) − X)g(Y ) = 0, 

for every measurable function g. The  merits  of  this  definition  is  that  it  can

be used for all kinds of random variables (discrete, continuous, mixed, etc.). 
However, for this definition to be sound, there are two facts that need to be 
verified: 

16 

E
[

(E[X |Y ]−X)g(Y )
]

= 0.

[ ]



(a) Existence: It turns out that as long as X is integrable, a function φ with the

above properties is guaranteed to exist. We already know that this  is  the

case for discrete random variables: the conditional expectation as defined in
the beginning of this section does have the desired properties. For general

random variables, this is a nontrivial and deep result. It will be revisited

later in this course.

(b) Uniqueness: It turns out that there is essentially only one function φ with

the above properties. More precisely, any two functions with the  above

properties are equal with probability 1.
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