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Markov chains with a single recurrence class 

Recall the relations →, ↔ introduced in the previous lecture for the class of 

finite state Markov chains. Recall that we defined a state i to be recurrent if 

whenever i → j we also have j → i, namely i ↔ j. We have observed that 

↔ is an equivalency relation, so that set of recurrent states is partitioned into 

equivalency classes R1, . . . , Rr . The remaining states T are transient. 

Lemma 1. For every l = 1, . . . , r and every i ∈ Rl, j ∈/ Rl we must have 

pi,j = 0. 

This means that once the chain is in some recurrent class R it stays there 

forever. 

Proof. The proof is simple: pi,j > 0 implies i → j. Since i is recurrent then 

also j → i implying j ∈ R - contradiction. 

Introduce the following basic random quantities. Given states i, j let 

Ti = min{n ≥ 1 : Xn = i|X0 = i}. 

In case no such n exists, we set Ti = ∞. Thus the range of Ti is N ∪ {∞}. 

The quantity is called the the first passage time. Let µi = E[Ti], possibly with 

µi = ∞. This is called mean recurrence time of the state i. 
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Lemma 2. For every state i ∈ T , P(Xn = i, i.o.) = 0. Namely, almost 

surely, after some finite time n0, the chain will never return to i. In addition 

E[Ti] = ∞ . 

Proof. By definition there exists a state j such that i → j, but j 9 i. It then 

follows that P(Ti = ∞) > 0 implying E[Ti] = ∞. Now, let us establish the first 

part. 

Let Ii,m be the indicator of the event that the M.c. returned to state i at least 

m times. Notice that P(Ii,1) = P(Ti < ∞) < 1. Also by M.c. property we 

have P(Ii,m|Ii,m−1) = P(Ti < ∞), as conditioning that at some point the M.c. 

returned to state i m−1 times does not impact its likelihood to return to this state 

again. Also notice Ii,m ⊂ Ii,m−1. Thus P(Ii,m) = P(Ii,m|Ii,m−1)P(Ii,m−1) = 
P(Ti < ∞)P(Ii,m−1) = · · · = Pm(Ti < ∞). Since P(Ti < ∞) < 1, then by 

continuity of probability property we obtain P(∩mIi,m) = limm→∞ P(Ii,m) = 
limm→∞ P

m(Ti < ∞) = 0. Notice that the event ∩mIi,m is precisely the event 

Xn = i, i.o. 

Exercise 1. Show that T 6= X . Namely, in every finite state M.c. there exists at 

least one recurrent state. 

Exercise 2. Let i ∈ T and let ˇ be an arbitrary stationary distribution. Establish 

that ˇi = 0. 

Exercise 3. Suppose M.c. has one recurrent class R. Show that for every i ∈ R 
P(Xn = i, i.o.) = 1. Moreover, show that there exists 0 < q < 1 and C > 0 
such that P(Ti > t) ≤ Cqt for all t ≥ 0. As a result, show that E[Ti] < ∞. 

We now focus on the family of Markov chains with only one recurrent class. 

Namely X = T ∪R. If in addition T = Ø, then such a M.c. is called irreducible. 

Uniqueness of the stationary distribution 

We now establish a fundamental result on M.c. with a single recurrence class. 

Theorem 1. A finite state M.c. with a single recurrence class has a unique 

stationary distribution ˇ, which is given as ˇi = 1 for all states i. Specifi-
µi 

cally, ˇi > 0 iff the state i is recurrent. 
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Proof. Let P be the transition matrix of the chain. We let the state space be 

X = {1, . . . , N}. We fix an arbitrary recurrent state k. We know that one exists 

by Exercise 1. Assume X0 = k. Let Ni be the number of visits to state i between 

two successive visits to state k. In case i = k, the last visit is counted but the 

initial is not. Namely, in the special case i = k the number of visits is 1 with 

probability one. Let ˆi(k) = E[Ni]. Consider the event {Xn = i, Tk ≥ n} and P P 
consider the indicator function IXn =i,Tk≥n = IXn =i. Notice n≥1 1≤n≤Tk 

that this sum is precisely Ni. Namely, 

X 
ˆi(k) = P(Xn = i, Tk ≥ n|X0 = k). (1) 

n≥1 

P 
Then using the formula E[Z] = P(Z ≥ n) for integer valued r.v., we n≥1 
obtain 

X X 
ˆi(k) = P(Tk ≥ n|X0 = k) = E[Tk] = µk. (2) 

i n≥1 

Since k is recurrent, then by Exercise 3, µk < ∞ implying ˆi(k) < ∞. We let 

ˆ(k) denote the vector with components ˆi(k). 

Lemma 3. ˆ(k) satisfies ˆT (k) = ˆT (k)P . In particular, for every recurrent 
ˆi(k) state k, ˇi = , 1 ≤ i ≤ N defines a stationary distribution. 
µk 

Proof. The second part follows from (2) and the fact that µk < ∞. Now we 

prove the first part. We have for every n ≥ 2 

X 
P(Xn = i, Tk ≥ n|X0 = k) = P(Xn = i, Xn−1 = j, Tk ≥ n|X0 = k) 

j 6=k 

(3) 
X 

= P(Xn−1 = j, Tk ≥ n − 1|X0 = k)pj,i (4) 

j 6=k 

Observe that P(X1 = i, Tk ≥ 1|X0 = k) = pk,i. We now sum the (3) over n 
and apply it to (1) to obtain 

XX 
ˆi(k) = pk,i + P(Xn−1 = j, Tk ≥ n − 1|X0 = k)pj,i 

j 6=k n≥2 
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P 
We recognize n≥2 P(Xn−1 = j, Tk ≥ n − 1|X0 = k) as ˆj (k). Using 

ˆk(k) = 1 we obtain 

X X 
ˆi(k) = ˆk(k)pk,i + ˆj(k)pj,i = ˆj(k)pj,i 

j 6=k j 

which is in vector form precisely ˆT (k) = ˆT (k)P . 

We now return to the proof of the theorem. Let ˇ denote an arbitrary sta-

tionary distribution of our M.c. We know one exists by Lemma 3 and, indepen-

dently by our linear programming based proof. By Exercise 2 we already know 

that ˇi = 1/µi = 0 for every transient state i. 
We now show that in must be that ˇk = 1/µk for every recurrent state k. 

In particular, the stationary distribution is unique. Assume that at time zero we 

start with distribution ˇ. Namely P(X0 = i) = ˇi for all i. Of course this 

implies that P(Xn = i) is also ˇi for all n. On the other hand, fix any recurrent 

state k and consider 

µkˇk = E[Tk|X0 = k]P(X0 = k) 
X 

= P(Tk ≥ n|X0 = k)P(X0 = k) 
n≥1 X 

= P(Tk ≥ n, X0 = k). 
n≥1 

On the other hand P(Tk ≥ 1,X0 = k) = P(X0 = k) and for n ≥ 2 

P(Tk ≥ n, X0 = k) = P(X0 = k, Xj =6 k, 1 ≤ j ≤ n − 1) 

= P(Xj =6 k, 1 ≤ j ≤ n − 1) − P(Xj =6 k, 0 ≤ j ≤ n − 1) 
( 
= 
∗) 
P(Xj 6= k, 0 ≤ j ≤ n − 2) − P(Xj 6= k, 0 ≤ j ≤ n − 1) 

= an−2 − an−1, 

where an = P(Xj =6 k, 0 ≤ j ≤ n) and (*) follows from stationarity of ˇ. Now 

a0 = P(X0 6= k). Putting together, we obtain 

X 
µkˇk = P(X0 = k) + (an−2 − an−1) 

n≥2 

= P(X0 = k) + P(X0 6= k) − lim an 
n 

= 1 − lim an 
n 
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But by continuity of probabilities limn an = P(Xn 6= k, ∀n). By Exercise 3, 

the state k, being recurrent is visited infinitely often with probability one. We 

conclude that limn an = 0, which gives µkˇk = 1, implying that ˇk is uniquely 

defined as 1/µk. 

Ergodic theorem 

Let Ni(t) denote the number of times the state i is visited during the times 

0, 1, . . . , t. What can be said about the behavior of Ni(t)/t when t is large? The 

answer turns out to be very simple: it is ˇi. These type of results are called 

ergodic properties, as they show how the time average of the system, namely 

Ni(t)/t relates to the spatial average, namely ˇi. 

Theorem 2. For arbitrary starting state X0 = k and for every state i, 

Ni(t) 
lim = ˇi 
t→∞ t 

almost surely. Also 

E[Ni(t)] 
lim = ˇi. 
t→∞ t 

Proof. Suppose X0 = k. If i is a transient state, then, as we have estab-

lished, almost surely after some finite time, the chain will never enter i, meaning 

limt Ni(t)/t = 0 almost surely. Since also ˇi = 0, then we have established the 

required equality for the case when i is a transient state. 

Suppose now i is a recurrent state. Let T1, T2, T3, . . . denote the time of suc-

cessive visits to i. Then the sequence Tn, n ≥ 2 is i.i.d. Also T1 is independent 

from the rest of the sequence, although it distribution is different from the one of 

Tm,m ≥ 2 since we have started the chain from k which is in general different 

from i. By the definition of Ni(t) we have 

X X 
Tm ≤ t < Tm 

1≤m≤Ni(t) 1≤m≤Ni(t)+1 

from which we obtain 
P P 

1≤m≤Ni(t) Tm t 1≤m≤Ni(t)+1 Tm Ni(t) + 1 
≤ < . (5) 

Ni(t) Ni(t) Ni(t) + 1 Ni(t) 
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We know from Exercise 3 that E[Tm] < ∞,m ≥ 2. Using a similar ap-

proach it can be shown that E[T1] < ∞, in particular T1 < ∞ a.s. Applying 

SLLN we have that almost surely 

P P 
Tm Tm n − 1 2≤m≤n 2≤m≤n 

lim = lim = E[T2] 
n→∞ n n→∞ n − 1 n 

which further implies 

P P 
Tm Tm 1≤m≤n 2≤m≤n T1 

lim = lim + lim = E[T2] 
n→∞ n n→∞ n n→∞ n 

almost surely. 

Since i is a recurrent state then by Exercise 3, Ni(t) → ∞ almost surely as 

t → ∞. Combining the preceding identity with (5) we obtain 

t 
lim = E[T2] = µi, 
t→∞ Ni(t) 

from which we obtain limt Ni(t)/t = µ −1 = ˇi almost surely. i 

To establish the convergence in expectation, notice that Ni(t) ≤ t almost 

surely, implying Ni(t)/t ≤ 1. Applying bounded convergence theorem, we 

obtain that limt E[Ni(t)]/t = ˇi, and the proof is complete. 

Markov chains with multiple recurrence classes 

How does the theory extend to the case when the M.c. has several recurrence 

classes R1, . . . , Rr? The summary of the theory is as follows (the proofs are 

very similar to the case of single recurrent class case and is omitted). It turns out 

that such a M.c. chain possesses r stationary distributions ˇi = (ˇ1 
i , . . . , ˇi ), 1 ≤ N 

i ≤ r, each ”concentrating” on the class Ri. Namely for each i and each 

state k ∈/ Ri we have ˇi = 0. The i-th stationary distribution is described k 

by ˇi = 1/µk for all k ∈ Ri and where µk is the mean return time from state k 

k ∈ Rj into itself. Intuitively, the stationary distribution ˇi corresponds to the 

case when the M.c. ”lives” entirely in the class Ri. One can prove that the fam-

ily of all of the stationary distributions of such a M.c. can be obtained by taking 

all possible convex combinations of ˇi , 1 ≤ i ≤ r, but we omit the proof. (Ex-

ercise: show that a convex combination of stationary distributions is a stationary 

distribution). 
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