MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MARKOV CHAINS II

Contents

1. Markov chains with a single recurrence class
2. Uniqueness of Stationary Distributions

1 Markov chains with a single recurrence class

Recall the relations $\rightarrow, \leftrightarrow$ introduced in the previous lecture for the class of finite state Markov chains. Recall that we defined a state i to be recurrent if whenever $i \rightarrow j$ we also have $j \rightarrow i$, namely $i \leftrightarrow j$. We have observed that \leftrightarrow is an equivalency relation, so that set of recurrent states is partitioned into equivalency classes R_{1}, \ldots, R_{r}. The remaining states \mathcal{T} are transient.

Lemma 1. For every $l=1, \ldots, r$ and every $i \in R_{l}, j \notin R_{l}$ we must have $p_{i, j}=0$.

This means that once the chain is in some recurrent class R it stays there forever.

Proof. The proof is simple: $p_{i, j}>0$ implies $i \rightarrow j$. Since i is recurrent then also $j \rightarrow i$ implying $j \in R$ - contradiction.

Introduce the following basic random quantities. Given states i, j let

$$
T_{i}=\min \left\{n \geq 1: X_{n}=i \mid X_{0}=i\right\} .
$$

In case no such n exists, we set $T_{i}=\infty$. Thus the range of T_{i} is $\mathcal{N} \cup\{\infty\}$. The quantity is called the the first passage time. Let $\mu_{i}=\mathbb{E}\left[T_{i}\right]$, possibly with $\mu_{i}=\infty$. This is called mean recurrence time of the state i.

Lemma 2. For every state $i \in \mathcal{T}, \mathbb{P}\left(X_{n}=i\right.$, i.o. $)=0$. Namely, almost surely, after some finite time n_{0}, the chain will never return to i. In addition $\mathbb{E}\left[T_{i}\right]=\infty$.

Proof. By definition there exists a state j such that $i \rightarrow j$, but $j \nrightarrow i$. It then follows that $\mathbb{P}\left(T_{i}=\infty\right)>0$ implying $\mathbb{E}\left[T_{i}\right]=\infty$. Now, let us establish the first part.

Let $I_{i, m}$ be the indicator of the event that the M.c. returned to state i at least m times. Notice that $\mathbb{P}\left(I_{i, 1}\right)=\mathbb{P}\left(T_{i}<\infty\right)<1$. Also by M.c. property we have $\mathbb{P}\left(I_{i, m} \mid I_{i, m-1}\right)=\mathbb{P}\left(T_{i}<\infty\right)$, as conditioning that at some point the M.c. returned to state $i m-1$ times does not impact its likelihood to return to this state again. Also notice $I_{i, m} \subset I_{i, m-1}$. Thus $\mathbb{P}\left(I_{i, m}\right)=\mathbb{P}\left(I_{i, m} \mid I_{i, m-1}\right) \mathbb{P}\left(I_{i, m-1}\right)=$ $\mathbb{P}\left(T_{i}<\infty\right) \mathbb{P}\left(I_{i, m-1}\right)=\cdots=\mathbb{P}^{m}\left(T_{i}<\infty\right)$. Since $\mathbb{P}\left(T_{i}<\infty\right)<1$, then by continuity of probability property we obtain $\mathbb{P}\left(\cap_{m} I_{i, m}\right)=\lim _{m \rightarrow \infty} \mathbb{P}\left(I_{i, m}\right)=$ $\lim _{m \rightarrow \infty} \mathbb{P}^{m}\left(T_{i}<\infty\right)=0$. Notice that the event $\cap_{m} I_{i, m}$ is precisely the event $X_{n}=i$, i.o.

Exercise 1. Show that $\mathcal{T} \neq \mathcal{X}$. Namely, in every finite state M.c. there exists at least one recurrent state.

Exercise 2. Let $i \in \mathcal{T}$ and let π be an arbitrary stationary distribution. Establish that $\pi_{i}=0$.

Exercise 3. Suppose M.c. has one recurrent class R. Show that for every $i \in R$ $\mathbb{P}\left(X_{n}=i\right.$, i.o. $)=1$. Moreover, show that there exists $0<q<1$ and $C>0$ such that $\mathbb{P}\left(T_{i}>t\right) \leq C q^{t}$ for all $t \geq 0$. As a result, show that $\mathbb{E}\left[T_{i}\right]<\infty$.

We now focus on the family of Markov chains with only one recurrent class. Namely $\mathcal{X}=\mathcal{T} \cup R$. If in addition $\mathcal{T}=\emptyset$, then such a M.c. is called irreducible.

2 Uniqueness of the stationary distribution

We now establish a fundamental result on M.c. with a single recurrence class.

Theorem 1. A finite state M.c. with a single recurrence class has a unique stationary distribution π, which is given as $\pi_{i}=\frac{1}{\mu_{i}}$ for all states i. Specifically, $\pi_{i}>0$ iff the state i is recurrent.

Proof. Let P be the transition matrix of the chain. We let the state space be $\mathcal{X}=\{1, \ldots, N\}$. We fix an arbitrary recurrent state k. We know that one exists by Exercise 1 . Assume $X_{0}=k$. Let N_{i} be the number of visits to state i between two successive visits to state k. In case $i=k$, the last visit is counted but the initial is not. Namely, in the special case $i=k$ the number of visits is 1 with probability one. Let $\rho_{i}(k)=\mathbb{E}\left[N_{i}\right]$. Consider the event $\left\{X_{n}=i, T_{k} \geq n\right\}$ and consider the indicator function $\sum_{n \geq 1} I_{X_{n}=i, T_{k} \geq n}=\sum_{1 \leq n \leq T_{k}} I_{X_{n}=i}$. Notice that this sum is precisely N_{i}. Namely,

$$
\begin{equation*}
\rho_{i}(k)=\sum_{n \geq 1} \mathbb{P}\left(X_{n}=i, T_{k} \geq n \mid X_{0}=k\right) . \tag{1}
\end{equation*}
$$

Then using the formula $\mathbb{E}[Z]=\sum_{n \geq 1} \mathbb{P}(Z \geq n)$ for integer valued r.v., we obtain

$$
\begin{equation*}
\sum_{i} \rho_{i}(k)=\sum_{n \geq 1} \mathbb{P}\left(T_{k} \geq n \mid X_{0}=k\right)=\mathbb{E}\left[T_{k}\right]=\mu_{k} \tag{2}
\end{equation*}
$$

Since k is recurrent, then by Exercise 3, $\mu_{k}<\infty$ implying $\rho_{i}(k)<\infty$. We let $\rho(k)$ denote the vector with components $\rho_{i}(k)$.

Lemma 3. $\rho(k)$ satisfies $\rho^{T}(k)=\rho^{T}(k) P$. In particular, for every recurrent state $k, \pi_{i}=\frac{\rho_{i}(k)}{\mu_{k}}, 1 \leq i \leq N$ defines a stationary distribution.

Proof. The second part follows from (2) and the fact that $\mu_{k}<\infty$. Now we prove the first part. We have for every $n \geq 2$

$$
\begin{align*}
\mathbb{P}\left(X_{n}=i, T_{k} \geq n \mid X_{0}=k\right) & =\sum_{j \neq k} \mathbb{P}\left(X_{n}=i, X_{n-1}=j, T_{k} \geq n \mid X_{0}=k\right) \tag{3}\\
& =\sum_{j \neq k} \mathbb{P}\left(X_{n-1}=j, T_{k} \geq n-1 \mid X_{0}=k\right) p_{j, i} \tag{4}
\end{align*}
$$

Observe that $\mathbb{P}\left(X_{1}=i, T_{k} \geq 1 \mid X_{0}=k\right)=p_{k, i}$. We now sum the (3) over n and apply it to (1) to obtain

$$
\rho_{i}(k)=p_{k, i}+\sum_{j \neq k} \sum_{n \geq 2} \mathbb{P}\left(X_{n-1}=j, T_{k} \geq n-1 \mid X_{0}=k\right) p_{j, i}
$$

We recognize $\sum_{n \geq 2} \mathbb{P}\left(X_{n-1}=j, T_{k} \geq n-1 \mid X_{0}=k\right)$ as $\rho_{j}(k)$. Using $\rho_{k}(k)=1$ we obtain

$$
\rho_{i}(k)=\rho_{k}(k) p_{k, i}+\sum_{j \neq k} \rho_{j}(k) p_{j, i}=\sum_{j} \rho_{j}(k) p_{j, i}
$$

which is in vector form precisely $\rho^{T}(k)=\rho^{T}(k) P$.
We now return to the proof of the theorem. Let π denote an arbitrary stationary distribution of our M.c. We know one exists by Lemma 3 and, independently by our linear programming based proof. By Exercise 2 we already know that $\pi_{i}=1 / \mu_{i}=0$ for every transient state i.

We now show that in must be that $\pi_{k}=1 / \mu_{k}$ for every recurrent state k. In particular, the stationary distribution is unique. Assume that at time zero we start with distribution π. Namely $\mathbb{P}\left(X_{0}=i\right)=\pi_{i}$ for all i. Of course this implies that $\mathbb{P}\left(X_{n}=i\right)$ is also π_{i} for all n. On the other hand, fix any recurrent state k and consider

$$
\begin{aligned}
\mu_{k} \pi_{k} & =\mathbb{E}\left[T_{k} \mid X_{0}=k\right] \mathbb{P}\left(X_{0}=k\right) \\
& =\sum_{n \geq 1} \mathbb{P}\left(T_{k} \geq n \mid X_{0}=k\right) \mathbb{P}\left(X_{0}=k\right) \\
& =\sum_{n \geq 1} \mathbb{P}\left(T_{k} \geq n, X_{0}=k\right) .
\end{aligned}
$$

On the other hand $\mathbb{P}\left(T_{k} \geq 1, X_{0}=k\right)=\mathbb{P}\left(X_{0}=k\right)$ and for $n \geq 2$

$$
\begin{aligned}
\mathbb{P}\left(T_{k} \geq n, X_{0}=k\right) & =\mathbb{P}\left(X_{0}=k, X_{j} \neq k, 1 \leq j \leq n-1\right) \\
& =\mathbb{P}\left(X_{j} \neq k, 1 \leq j \leq n-1\right)-\mathbb{P}\left(X_{j} \neq k, 0 \leq j \leq n-1\right) \\
& \stackrel{(*)}{=} \mathbb{P}\left(X_{j} \neq k, 0 \leq j \leq n-2\right)-\mathbb{P}\left(X_{j} \neq k, 0 \leq j \leq n-1\right) \\
& =a_{n-2}-a_{n-1},
\end{aligned}
$$

where $a_{n}=\mathbb{P}\left(X_{j} \neq k, 0 \leq j \leq n\right)$ and $\left(^{*}\right)$ follows from stationarity of π. Now $a_{0}=\mathbb{P}\left(X_{0} \neq k\right)$. Putting together, we obtain

$$
\begin{aligned}
\mu_{k} \pi_{k} & =\mathbb{P}\left(X_{0}=k\right)+\sum_{n \geq 2}\left(a_{n-2}-a_{n-1}\right) \\
& =\mathbb{P}\left(X_{0}=k\right)+\mathbb{P}\left(X_{0} \neq k\right)-\lim _{n} a_{n} \\
& =1-\lim _{n} a_{n}
\end{aligned}
$$

But by continuity of probabilities $\lim _{n} a_{n}=\mathbb{P}\left(X_{n} \neq k, \forall n\right)$. By Exercise 3, the state k, being recurrent is visited infinitely often with probability one. We conclude that $\lim _{n} a_{n}=0$, which gives $\mu_{k} \pi_{k}=1$, implying that π_{k} is uniquely defined as $1 / \mu_{k}$.

3 Ergodic theorem

Let $N_{i}(t)$ denote the number of times the state i is visited during the times $0,1, \ldots, t$. What can be said about the behavior of $N_{i}(t) / t$ when t is large? The answer turns out to be very simple: it is π_{i}. These type of results are called ergodic properties, as they show how the time average of the system, namely $N_{i}(t) / t$ relates to the spatial average, namely π_{i}.

Theorem 2. For arbitrary starting state $X_{0}=k$ and for every state i,

$$
\lim _{t \rightarrow \infty} \frac{N_{i}(t)}{t}=\pi_{i}
$$

almost surely. Also

$$
\lim _{t \rightarrow \infty} \frac{\mathbb{E}\left[N_{i}(t)\right]}{t}=\pi_{i}
$$

Proof. Suppose $X_{0}=k$. If i is a transient state, then, as we have established, almost surely after some finite time, the chain will never enter i, meaning $\lim _{t} N_{i}(t) / t=0$ almost surely. Since also $\pi_{i}=0$, then we have established the required equality for the case when i is a transient state.

Suppose now i is a recurrent state. Let $T_{1}, T_{2}, T_{3}, \ldots$ denote the time of successive visits to i. Then the sequence $T_{n}, n \geq 2$ is i.i.d. Also T_{1} is independent from the rest of the sequence, although it distribution is different from the one of $T_{m}, m \geq 2$ since we have started the chain from k which is in general different from i. By the definition of $N_{i}(t)$ we have

$$
\sum_{1 \leq m \leq N_{i}(t)} T_{m} \leq t<\sum_{1 \leq m \leq N_{i}(t)+1} T_{m}
$$

from which we obtain

$$
\begin{equation*}
\frac{\sum_{1 \leq m \leq N_{i}(t)} T_{m}}{N_{i}(t)} \leq \frac{t}{N_{i}(t)}<\frac{\sum_{1 \leq m \leq N_{i}(t)+1} T_{m}}{N_{i}(t)+1} \frac{N_{i}(t)+1}{N_{i}(t)} \tag{5}
\end{equation*}
$$

We know from Exercise 3 that $\mathbb{E}\left[T_{m}\right]<\infty, m \geq 2$. Using a similar approach it can be shown that $\mathbb{E}\left[T_{1}\right]<\infty$, in particular $T_{1}<\infty$ a.s. Applying SLLN we have that almost surely

$$
\lim _{n \rightarrow \infty} \frac{\sum_{2 \leq m \leq n} T_{m}}{n}=\lim _{n \rightarrow \infty} \frac{\sum_{2 \leq m \leq n} T_{m}}{n-1} \frac{n-1}{n}=\mathbb{E}\left[T_{2}\right]
$$

which further implies

$$
\lim _{n \rightarrow \infty} \frac{\sum_{1 \leq m \leq n} T_{m}}{n}=\lim _{n \rightarrow \infty} \frac{\sum_{2 \leq m \leq n} T_{m}}{n}+\lim _{n \rightarrow \infty} \frac{T_{1}}{n}=\mathbb{E}\left[T_{2}\right]
$$

almost surely.
Since i is a recurrent state then by Exercise 3, $N_{i}(t) \rightarrow \infty$ almost surely as $t \rightarrow \infty$. Combining the preceding identity with (5) we obtain

$$
\lim _{t \rightarrow \infty} \frac{t}{N_{i}(t)}=\mathbb{E}\left[T_{2}\right]=\mu_{i}
$$

from which we obtain $\lim _{t} N_{i}(t) / t=\mu_{i}^{-1}=\pi_{i}$ almost surely.
To establish the convergence in expectation, notice that $N_{i}(t) \leq t$ almost surely, implying $N_{i}(t) / t \leq 1$. Applying bounded convergence theorem, we obtain that $\lim _{t} \mathbb{E}\left[N_{i}(t)\right] / t=\pi_{i}$, and the proof is complete.

4 Markov chains with multiple recurrence classes

How does the theory extend to the case when the M.c. has several recurrence classes R_{1}, \ldots, R_{r} ? The summary of the theory is as follows (the proofs are very similar to the case of single recurrent class case and is omitted). It turns out that such a M.c. chain possesses r stationary distributions $\pi^{i}=\left(\pi_{1}^{i}, \ldots, \pi_{N}^{i}\right), 1 \leq$ $i \leq r$, each "concentrating" on the class R_{i}. Namely for each i and each state $k \notin R_{i}$ we have $\pi_{k}^{i}=0$. The i-th stationary distribution is described by $\pi_{k}^{i}=1 / \mu_{k}$ for all $k \in R_{i}$ and where μ_{k} is the mean return time from state $k \in R_{j}$ into itself. Intuitively, the stationary distribution π^{i} corresponds to the case when the M.c. "lives" entirely in the class R_{i}. One can prove that the family of all of the stationary distributions of such a M.c. can be obtained by taking all possible convex combinations of $\pi^{i}, 1 \leq i \leq r$, but we omit the proof. (Exercise: show that a convex combination of stationary distributions is a stationary distribution).

References

[1] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, Oxford University Press, 3rd edition, 2001.
[2] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to probability, Athena Scientific, 2002.

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

