MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436/15.085J Lecture 26

Lecturer: Yury Polyanskiy Scribe: MIT Class Participants
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They are posted to serve class purposes.

Martingales II

Content.

1. Review
2. Some applications of Optional Stopping Theorem
3. Martingale Convergence Theorem

1 Review

Definition 1 (Martingale). $\left\{M_{t}\right\}$ is a martingale with respect to $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset$ $\ldots \subset \mathcal{F}$ if it satisfies:

1. $M_{t} \in \mathcal{F}_{t}, t \geq 0$
2. $\mathbb{E}\left|M_{t}\right|<\infty, \quad t \geq 0$
3. $\mathbb{E}\left[M_{t} \mid \mathcal{F}_{t-1}\right]=M_{t-1}, \quad t \geq 1$

In other words, $\left\{M_{t}\right\}$ is a martingale w.r.t. $\left\{X_{t}\right\}$ if:

1. $M_{t}=f\left(X_{0}, \ldots, X_{t}\right), t \geq 0$
2. $\mathbb{E}\left|M_{t}\right|<\infty, \quad t \geq 0$
3. $\mathbb{E}\left[M_{t} \mid X_{0}, \ldots, X_{t-1}\right]=M_{t-1}, \quad t \geq 1$.

For convenience, we denote it by

$$
\mathbb{E}_{s}=\mathbb{E}\left[\cdot \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\cdot \mid X_{0}, \ldots, X_{s}\right],
$$

and the third condition can be written as: $\mathbb{E}_{t-1} M_{t}=M_{t-1}$ for any $t \geq 1$.
When we say $\left\{M_{t}\right\}$ is a martingale without specifying the filtration, we mean that it is a martingale with respect to its natural filtration, i.e. $\mathcal{F}_{t}=\sigma\left(M_{0}, \ldots, M_{t}\right)$. We consider it as a special case of the definition.

Now if $\left\{M_{t}\right\}$ is a martingale with respect to the filtration $\mathcal{F}_{t}=\sigma\left(X_{0}, \ldots, X_{t}\right)$, it is also a martingale with respect to its filtration $\sigma\left(M_{0}, \ldots, M_{t}\right)$. In fact, by the tower property, we have:
$\mathbb{E}\left[M_{t} \mid M_{0}, \ldots, M_{t-1}\right]=\mathbb{E}\left[\mathbb{E}\left[M_{t} \mid \mathcal{F}_{t}\right] \mid M_{0}, \ldots, M_{t-1}\right]=\mathbb{E}\left[M_{t-1} \mid M_{0}, \ldots, M_{t-1}\right]=M_{t-1}$.
Properties of a martingale $\left\{M_{t}\right\}$

- $\mathbb{E}_{s} M_{t}=M_{t \wedge s}$
- $\mathbb{E} M_{t}=\mathbb{E} M_{0}, \forall t \geq 0$
- If M_{t} is a martingale, and τ is a stopping time, then $Y_{t}=M_{t \wedge \tau}$ is a martingale.
- Side note: \mathbb{E}_{n} also works like a martingale: $\mathbb{E}_{n} \mathbb{E}_{m}=\mathbb{E}_{n \wedge m}, \mathbb{E}_{n}=$ $\mathbb{E}_{n} \mathbb{E}=\mathbb{E}$. In fact, you can also define \mathbb{E}_{τ} and even have $\mathbb{E}_{\tau} M_{t}=M_{\tau \wedge t}$. But we won't do it in this class.

Let A_{t} be the gambler's ruin Markov chain starting from k. Now let's consider the simple random walk S_{t} starting from $S_{t}=k$, and $S_{t}=S_{t-1}+X_{t}$ with $\mathbb{P}\left(X_{t}= \pm 1\right)=\frac{1}{2}$. Let,

$$
\tau=\inf \left\{t: S_{t}=0 \text { or } S_{t}=n\right\} .
$$

Notice that $A_{t}=S_{t \wedge \tau}$. Since S_{t} is a martingale, it follows that its stopped martingale A_{t} is a martingale as well. This implies a good property of gambler's ruin Markov chain, which is

$$
\mathbb{E} A_{t}=A_{0}=k
$$

We will use the definitions and notations of S_{t} and A_{t} for several times in this lecture.

Theorem 1 (Optional Stopping Theorem). If $\left\{M_{t}\right\}$ is a martingale and τ is a stopping time such that $\left\{M_{t}\right\}$ is uniformly integrable and $\mathbb{P}(\tau<\infty)=1$, then

$$
\mathbb{E} M_{\tau}=\mathbb{E} M_{0}
$$

Proposition 1 (Uniformly integrable martingales). The following propositions about uniformly integrable martingales (u.i.M.) hold:

1. $M_{t}=\mathbb{E}\left[Z \mid \mathcal{F}_{t}\right]$ for any Z such that $\mathbb{E}|Z|<\infty$ is always u.i.M.
2. If there exists $G(t)$ such that $G(t) / t \rightarrow \infty$ as $t \rightarrow \infty$. If $\sup _{t} \mathbb{E}\left[G\left(M_{t}\right)\right]<$ ∞, then M_{t} is u.i.M.
3. If $\left|M_{t}-M_{t-1}\right| \leq c<\infty$ and $\mathbb{E} \tau<\infty$, then $Y_{t}=M_{t \wedge \tau}$ is u.i.M.
$\left\{S_{n}\right\}$ is not uniformly integrable. Indeed, the magnitude of $\left|S_{n}\right|$ is approximately $O(\sqrt{n})$. For any b, one can always find some $N \approx b^{2}$ such that $\mathbb{E}\left[\left|S_{N}\right| 1\left\{\left|S_{N}\right| \geq b\right\}\right] \geq c$, so $\sup _{n} \mathbb{E}\left[\left|S_{n}\right| 1\left\{\left|S_{n}\right| \geq b\right\}\right] \nrightarrow 0$ as $b \rightarrow \infty$. Hence, S_{n} is not uniformly integrable.

2 Some applications of O.S.T.

2.1 Gambler's Ruin

For the gambler's ruin problem, we start with $A_{0}=k$, and we want to find $\mathbb{P}[$ win $]=\mathbb{P}\left[A_{\infty}=n\right]$.

Note that $A_{t}=S_{t \wedge \tau}$ is a u.i.M (since A_{t} is bounded), therefore

$$
n \mathbb{P}[\text { win }]=\mathbb{E} A_{\tau}=\mathbb{E} A_{0}=k
$$

as

$$
A_{\tau}= \begin{cases}0, & \text { "ruined" } \\ n, & \text { "won" }\end{cases}
$$

Therefore, $\mathbb{P}[$ win $]=\frac{k}{n}$.
Now let $M_{t}=S_{t}^{2}-t=\left(S_{t-1}+X_{t}\right)^{2}-t=S_{t-1}^{2}+2 X_{t} S_{t-1}+X_{t}^{2}-t=$ $S_{t-1}^{2}-(t-1)+2 X_{t} S_{t-1}=M_{t-1}+2 X_{t} S_{t-1}$. Therefore,

$$
\mathbb{E}_{t-1} M_{t}=M_{t-1}
$$

$M_{t \wedge \tau}$ is uniformly integrable since the increment $\left|M_{t}-M_{t-1}\right|=2\left|X_{t} S_{t-1}\right|$ is bounded.
Therefore, by OST, we have

$$
\frac{k}{n} \cdot n^{2}-\mathbb{E} \tau=\mathbb{E}\left[M_{\tau}\right]=M_{0}=k^{2},
$$

and thus, $\mathbb{E} \tau=k(n-k)$.

2.2 Null recurrence of S_{t}

We start with $S_{0}=k$. Let $\tau_{1}=\inf \left\{t: S_{t}=0\right\}$, and $B_{t}=S_{t \wedge \tau_{1}}$. One can think of B_{t} as a Markov chain with 0 the absorbing state.
We know from recurrence of S_{t} that $\tau_{1}<\infty$ a.s.. We also know that $\mathbb{E} S_{t}=$ $\mathbb{E} B_{t}=\mathbb{E} S_{0}=k$.

If B_{t} were a u.i.M, then OST applies, we will have $\mathbb{E} B_{\tau_{1}}=k$. However, by definition, $B_{\tau_{1}}=0$ a.s., so $\mathbb{E} B_{\tau_{1}}=0 \neq k$. By Proposition 2(3), the only thing that prevents B_{t} from being a u.i.M is $\mathbb{E} \tau=\infty$. Therefore, S_{t} is null recurrent.

2.3 Gambler's Ruin in the asymmetric case

For the asymmetric case, i.e. $S_{t}=S_{t-1}+X_{t}$ with $\mathbb{P}\left(X_{t}=1\right)=p$ and $\mathbb{P}\left(X_{t}=-1\right)=1-p$, one can use the following two martingales to compute $\mathbb{P}[$ win $]$ and $\mathbb{E} \tau$:

1. $M_{t}=S_{t}-(2 p-1) t$
2. $N_{t}=e^{\lambda S_{t}-t \psi_{X}(\lambda)}$, where $\psi_{X_{1}}(\lambda)=\ln M_{X_{1}}(\lambda)$

From OST, we have

$$
\mathbb{E} S_{\tau}-(2 p-1) \mathbb{E} \tau=\mathbb{E} M_{\tau}=M_{0}=k
$$

and

$$
e^{\lambda n} \mathbb{P}[\text { win }]+\mathbb{P}[\text { ruined }]=\mathbb{E} N_{\tau}=N_{0}=e^{\lambda k},
$$

with some $\lambda\left(=\ln \frac{p}{1-p}\right)$ such that $\psi_{X_{1}}(\lambda)=0$.

3 Martingale Convergence Theorem

Think of M_{t} as the price of stock. At time $t-1$, you decide to move your possession of stock to F_{t} shares, where $F_{t} \in \mathcal{F}_{t-1}$ is determined by all the
observed information at time $t-1$. Then the value of your portfolio at time t is

$$
V_{t}=F_{0} M_{0}+F_{1}\left(M_{1}-M_{0}\right)+\ldots+F_{t}\left(M_{t}-M_{t-1}\right) \triangleq \int_{0}^{t} F d M .
$$

Proposition 2. If M_{t} is a martingale, then V_{t} is a martingale. In particular, $\mathbb{E} V_{t}=\mathbb{E} V_{0}$.

The important consequence is that if you start with F_{0} shares priced at M_{0} then no trading strategy (and no finite cash-out time) can yield an expectation different from what you had $\mathbb{E}\left[F_{0} M_{0}\right]$ in the beginning. Assuming the market price is a martingale with respect to the same filtration \mathcal{F}_{t} that determines the available information you have to execute the trading decisions.

Definition 2. Starting $S_{0}=0$, define $T_{k}=\inf \left\{t \geq S_{k-1}: M_{t} \leq a\right\}$, $S_{k}=\inf \left\{t \geq T_{k}: M_{t} \geq b\right\}$. Define $U_{n}(a, b)=\#$ of upcrossings of (a, b) in $0 \leq t \leq n$, i.e.

$$
U_{n}(a, b)=\sup \left\{k: S_{k} \leq n\right\} .
$$

Lemma 1 (Upcrossing Lemma).

$$
\mathbb{E}\left[U_{n}(a, b)\right] \leq \frac{\mathbb{E}\left(M_{n}-a\right)_{-}}{b-a}
$$

Proof. Starting with $F_{0}=0$ and do trading: buy 1 share when $M_{t} \leq a$ and sell it when $M_{t} \geq b$. Since $V_{0}=0$, we have

$$
V_{n} \geq(b-a) U_{n}+\left(M_{n}-a\right) \wedge 0=(b-a) U_{n}-\left(M_{n}-a\right)_{-} .
$$

Since V_{n} is a martingale, it follows from Optional Stopping Theorem that

$$
\mathbb{E} U_{n} \leq \frac{\mathbb{E}\left(M_{n}-a\right)_{-}}{b-a}
$$

Theorem 2. If M_{n} is a martingale such that $\mu \quad \sup _{n} \mathbb{E}\left|M_{n}\right|<\infty$, then there exists an integrable random variable M_{∞} such that

$$
M_{n} \xrightarrow{\text { a.s. }} M_{\infty}, \quad \text { and } \quad \mathbb{E}\left[\left|M_{\infty}\right|\right] \leq \mu<\infty .
$$

If M_{t} is u.i.M, then $M_{t} \xrightarrow{L_{7}} M_{\infty}$ and

$$
M_{t}=\mathbb{E}\left[M_{\infty} \mid \mathcal{F}_{t}\right] .
$$

Remark: Note that if M_{t} is u.i.M. then $\mu<\infty$ automatically. Thus, the second part of the theorem shows that every u.i.M. is in fact a Doob martingale.

Proof. Proof of part 1: Fix $b>a$,

$$
U(a, b)=\lim _{n \rightarrow \infty} U_{n}(a, b) .
$$

By the upcrossing lemma, we have

$$
\mathbb{E} U_{n}(a, b) \leq \frac{\mathbb{E}\left(M_{n}-a\right)_{-}}{b-a} \leq \sup _{n} \frac{\mathbb{E}\left|M_{n}\right|+|a|}{b-a}<\infty .
$$

Therefore, by Monotone Convergence Theorem, we have

$$
\mathbb{E} U(a, b)=\lim _{n \rightarrow \infty} \mathbb{E} U_{n}(a, b) \leq \sup _{n} \frac{\mathbb{E}\left|M_{n}\right|+|a|}{b-a}<\infty .
$$

This imples that,

$$
\mathbb{P}(U(a, b)=\infty \text { for any } b>a, a, b \in \mathbb{Q})=0
$$

So with probability 1 the trajectory M_{n} intersects any arbitrary small interval only finitely many times. Thus there must exist a (possibly extended real-valued) random variable M_{∞} such that $M_{n} \xrightarrow{\text { a.s. }} M_{\infty}$.

To show that M_{∞} is in fact integrable (and hence real-valued) we use Fatou's lemma:

$$
\mathbb{E}\left[\left|M_{\infty}\right|\right]=\mathbb{E}\left[\liminf _{n \rightarrow \infty}\left|M_{n}\right|\right] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[\left|M_{n}\right|\right] \leq \mu<\infty
$$

Proof of part 2: To show $M_{t}=\mathbb{E}\left[M_{\infty} \mid \mathcal{F}_{t}\right]$, it suffices to show that for any $B \in \mathcal{F}_{t}$, we have

$$
\mathbb{E} M_{\infty} 1_{B}=\mathbb{E} M_{t} 1_{B} .
$$

For any $m \geq t$, we have

$$
\mathbb{E} M_{m} 1_{B}=\mathbb{E}\left[\mathbb{E}_{t}\left[M_{m} 1_{B}\right]\right]=\mathbb{E}\left[1_{B} M_{t}\right]
$$

Since $M_{m} 1_{B} \xrightarrow{\text { a.s. }} M_{\infty} 1_{B}$ and $\left\{M_{m} 1_{B}\right\}$ is uniformly integrable, it follows that $M_{m} 1_{B} \xrightarrow{L_{7}} M_{\infty} 1_{B}$. Therefore,

$$
\mathbb{E}\left[M_{t} 1_{B}\right]=\lim _{m \rightarrow \infty} \mathbb{E}\left[M_{m} 1_{B}\right]=\mathbb{E}\left[M_{\infty} 1_{B}\right]
$$

Corollary 1. If $M_{n} \geq 0, M_{n}$ is a martingale, then it converges almost surely to integrable M_{∞}.

Proof. Since for any n,

$$
\mathbb{E}\left|M_{n}\right|=\mathbb{E} M_{n}=\mathbb{E} M_{0}
$$

it follows that

$$
\sup _{n} \mathbb{E}\left|M_{n}\right|<\infty .
$$

In particular, $M_{n}=X_{1} \ldots X_{n}$ such that $X_{n} \geq 0, \mathbb{E} X_{n}=1$. Then, M_{n} converges almost surely.

4 Further topics

Martingale and stopping time theory is rich subject. The key omissions are:

- A lot of results about martingales are also available for submartingales (i.e. when $\mathbb{E}_{t-1}\left[M_{t}\right] \geq M_{t-1}$) and supermartingales (i.e. when $\mathbb{E}_{t-1}\left[M_{t}\right] \leq$ M_{t-1}).
- Maximal inequalities for martingales/submartingales/supermartingales). These establish results similar to Kolmogorov's maximal inequalities (for sums of independent r.v.s) but for general martingales. To get a flavor of such results, if $M_{0}=0$ then

$$
\mathbb{P}\left[\max _{0 \leq t \leq n} M_{t}>b\right]=\mathbb{P}\left[U_{n}(0, b) \geq 1\right] \leq \frac{1}{b} \mathbb{E}\left[\left|M_{n}\right|\right],
$$

where in the last step we applied the upcrossing Lemma and Markov's inequality. So in particular, in the setting of convergence theorem we see that life-time maximum of M_{t} is of the order of μ. Other maximal inequalities bound p-th norm of the maximum in terms of the p-th norm of M_{n} etc.

MIT OpenCourseWare
https://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

