MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436/15.085J Lecture 26 Lecturer: Yury Polyanskiy

Scribe: MIT Class Participants

Disclaimer: *These notes have not been subjected to the usual scrutiny reserved for formal publications. They are posted to serve class purposes.*

Martingales II

Content.

- 1. Review
- 2. Some applications of Optional Stopping Theorem
- 3. Martingale Convergence Theorem

1 Review

Definition 1 (Martingale). $\{M_t\}$ is a martingale with respect to $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}$ if it satisfies: 1. $M_t \in \mathcal{F}_t, t \ge 0$ 2. $\mathbb{E}|M_t| < \infty, t \ge 0$ 3. $\mathbb{E}[M_t|\mathcal{F}_{t-1}] = M_{t-1}, t \ge 1$

In other words, $\{M_t\}$ is a martingale w.r.t. $\{X_t\}$ if:

- 1. $M_t = f(X_0, ..., X_t), t \ge 0$ 2. $\mathbb{E}|M_t| < \infty, t \ge 0$
- 3. $\mathbb{E}[M_t|X_0,\ldots,X_{t-1}] = M_{t-1}, t \ge 1.$

For convenience, we denote it by

$$\mathbb{E}_s = \mathbb{E}[\cdot | \mathcal{F}_s] = \mathbb{E}[\cdot | X_0, \dots, X_s],$$

and the third condition can be written as: $\mathbb{E}_{t-1}M_t = M_{t-1}$ for any $t \ge 1$.

When we say $\{M_t\}$ is a martingale without specifying the filtration, we mean that it is a martingale with respect to its natural filtration, i.e. $\mathcal{F}_t = \sigma(M_0, \dots, M_t)$. We consider it as a special case of the definition.

Now if $\{M_t\}$ is a martingale with respect to the filtration $\mathcal{F}_t = \sigma(X_0, \ldots, X_t)$, it is also a martingale with respect to its filtration $\sigma(M_0,\ldots,M_t)$. In fact, by the tower property, we have:

 $\mathbb{E}[M_t|M_0,\ldots,M_{t-1}] = \mathbb{E}[\mathbb{E}[M_t|\mathcal{F}_t]|M_0,\ldots,M_{t-1}] = \mathbb{E}[M_{t-1}|M_0,\ldots,M_{t-1}] = M_{t-1}.$

Properties of a martingale $\{M_t\}$

- E_sM_t = M_{t∧s}
 EM_t = EM₀, ∀t ≥ 0
 If M_t is a martingale, and τ is a stopping time, then Y_t = M_{t∧τ} is a martingale.
- Side note: \mathbb{E}_n also works like a martingale: $\mathbb{E}_n \mathbb{E}_m = \mathbb{E}_{n \wedge m}$, $\mathbb{E} \mathbb{E}_n =$ $\mathbb{E}_n\mathbb{E} = \mathbb{E}$. In fact, you can also define \mathbb{E}_{τ} and even have $\mathbb{E}_{\tau}M_t = M_{\tau \wedge t}$. But we won't do it in this class.

Let A_t be the gambler's ruin Markov chain starting from k. Now let's consider the simple random walk S_t starting from $S_t = k$, and $S_t = S_{t-1} + X_t$ with $\mathbb{P}(X_t = \pm 1) = \frac{1}{2}$. Let,

$$\tau = \inf\{t : S_t = 0 \text{ or } S_t = n\}.$$

Notice that $A_t = S_{t \wedge \tau}$. Since S_t is a martingale, it follows that its stopped martingale A_t is a martingale as well. This implies a good property of gambler's ruin Markov chain, which is

$$\mathbb{E}A_t = A_0 = k.$$

We will use the definitions and notations of S_t and A_t for several times in this lecture.

Theorem 1 (Optional Stopping Theorem). If $\{M_t\}$ is a martingale and τ is a stopping time such that $\{M_t\}$ is uniformly integrable and $\mathbb{P}(\tau < \infty) = 1$, then

$$\mathbb{E}M_{\tau} = \mathbb{E}M_0.$$

Proposition 1 (Uniformly integrable martingales). *The following propositions about uniformly integrable martingales (u.i.M.) hold:*

- 1. $M_t = \mathbb{E}[Z|\mathcal{F}_t]$ for any Z such that $\mathbb{E}|Z| < \infty$ is always u.i.M.
- 2. If there exists G(t) such that $G(t)/t \to \infty$ as $t \to \infty$. If $\sup_t \mathbb{E}[G(M_t)] < \infty$, then M_t is u.i.M.
- 3. If $|M_t M_{t-1}| \le c < \infty$ and $\mathbb{E}\tau < \infty$, then $Y_t = M_{t \wedge \tau}$ is u.i.M.

 $\{S_n\}$ is not uniformly integrable. Indeed, the magnitude of $|S_n|$ is approximately $O(\sqrt{n})$. For any b, one can always find some $N \approx b^2$ such that $\mathbb{E}[|S_N|1\{|S_N| \ge b\}] \ge c$, so $\sup_n \mathbb{E}[|S_n|1\{|S_n| \ge b\}] \not\to 0$ as $b \to \infty$. Hence, S_n is not uniformly integrable.

2 Some applications of O.S.T.

2.1 Gambler's Ruin

For the **gambler's ruin** problem, we start with $A_0 = k$, and we want to find $\mathbb{P}[win] = \mathbb{P}[A_{\infty} = n]$.

Note that $A_t = S_{t \wedge \tau}$ is a u.i.M (since A_t is bounded), therefore

$$n\mathbb{P}[win] = \mathbb{E}A_{\tau} = \mathbb{E}A_0 = k_1$$

as

$$A_{\tau} = \begin{cases} 0, & \text{"ruined"} \\ n, & \text{"won"} \end{cases}$$

Therefore, $\mathbb{P}[win] = \frac{k}{n}$.

Now let $M_t = S_t^2 - t = (S_{t-1} + X_t)^2 - t = S_{t-1}^2 + 2X_tS_{t-1} + X_t^2 - t = S_{t-1}^2 - (t-1) + 2X_tS_{t-1} = M_{t-1} + 2X_tS_{t-1}$. Therefore,

$$\mathbb{E}_{t-1}M_t = M_{t-1}.$$

 $M_{t\wedge\tau}$ is uniformly integrable since the increment $|M_t - M_{t-1}| = 2|X_tS_{t-1}|$ is bounded.

Therefore, by OST, we have

$$\frac{k}{n} \cdot n^2 - \mathbb{E}\tau = \mathbb{E}[M_\tau] = M_0 = k^2,$$

and thus, $\mathbb{E}\tau = k(n-k)$.

2.2 Null recurrence of S_t

We start with $S_0 = k$. Let $\tau_1 = \inf\{t : S_t = 0\}$, and $B_t = S_{t \wedge \tau_1}$. One can think of B_t as a Markov chain with 0 the absorbing state.

We know from recurrence of S_t that $\tau_1 < \infty$ a.s.. We also know that $\mathbb{E}S_t = \mathbb{E}B_t = \mathbb{E}S_0 = k$.

If B_t were a u.i.M, then OST applies, we will have $\mathbb{E}B_{\tau_1} = k$. However, by definition, $B_{\tau_1} = 0$ a.s., so $\mathbb{E}B_{\tau_1} = 0 \neq k$. By Proposition 2(3), the only thing that prevents B_t from being a u.i.M is $\mathbb{E}\tau = \infty$. Therefore, S_t is null recurrent.

2.3 Gambler's Ruin in the asymmetric case

For the asymmetric case, i.e. $S_t = S_{t-1} + X_t$ with $\mathbb{P}(X_t = 1) = p$ and $\mathbb{P}(X_t = -1) = 1 - p$, one can use the following two martingales to compute $\mathbb{P}[win]$ and $\mathbb{E}\tau$:

1. $M_t = S_t - (2p - 1)t$

2.
$$N_t = e^{\lambda S_t - t\psi_X(\lambda)}$$
, where $\psi_{X_1}(\lambda) = \ln M_{X_1}(\lambda)$

From OST, we have

$$\mathbb{E}S_{\tau} - (2p-1)\mathbb{E}\tau = \mathbb{E}M_{\tau} = M_0 = k$$

and

$$e^{\lambda n} \mathbb{P}[win] + \mathbb{P}[ruined] = \mathbb{E}N_{\tau} = N_0 = e^{\lambda k},$$

with some $\lambda (= \ln \frac{p}{1-p})$ such that $\psi_{X_1}(\lambda) = 0$.

3 Martingale Convergence Theorem

Think of M_t as the price of stock. At time t - 1, you decide to move your possession of stock to F_t shares, where $F_t \in \mathcal{F}_{t-1}$ is determined by all the

observed information at time t - 1. Then the value of your portfolio at time t is

$$V_t = F_0 M_0 + F_1 (M_1 - M_0) + \ldots + F_t (M_t - M_{t-1}) \stackrel{\triangle}{=} \int_0^t F \, dM.$$

Proposition 2. If M_t is a martingale, then V_t is a martingale. In particular, $\mathbb{E}V_t = \mathbb{E}V_0$.

The important consequence is that if you start with F_0 shares priced at M_0 then no trading strategy (and no finite cash-out time) can yield an expectation different from what you had $\mathbb{E}[F_0M_0]$ in the beginning. Assuming the market price is a martingale with respect to the same filtration \mathcal{F}_t that determines the available information you have to execute the trading decisions.

Definition 2. Starting $S_0 = 0$, define $T_k = \inf\{t \ge S_{k-1} : M_t \le a\}$, $S_k = \inf\{t \ge T_k : M_t \ge b\}$. Define $U_n(a, b) =$ # of upcrossings of (a, b) in $0 \le t \le n$, i.e.

$$U_n(a,b) = \sup\{k : S_k \le n\}.$$

Lemma 1 (Upcrossing Lemma).

$$\mathbb{E}[U_n(a,b)] \le \frac{\mathbb{E}(M_n-a)_{-}}{b-a}.$$

Proof. Starting with $F_0 = 0$ and do trading: buy 1 share when $M_t \le a$ and sell it when $M_t \ge b$. Since $V_0 = 0$, we have

$$V_n \ge (b-a)U_n + (M_n - a) \land 0 = (b-a)U_n - (M_n - a)_{-1}$$

Since V_n is a martingale, it follows from Optional Stopping Theorem that

$$\mathbb{E}U_n \le \frac{\mathbb{E}(M_n - a)_{-}}{b - a}.$$

Theorem 2. If M_n is a martingale such that $\mu \quad \sup_n \mathbb{E}|M_n| < \infty$, then there exists an integrable random variable M_∞ such that

$$M_n \stackrel{\text{a.s.}}{\to} M_\infty$$
, and $\mathbb{E}[|M_\infty|] \le \mu < \infty$.

If M_t is u.i.M, then $M_t \stackrel{L_1}{\rightarrow} M_\infty$ and

$$M_t = \mathbb{E}[M_\infty | \mathcal{F}_t].$$

Remark: Note that if M_t is u.i.M. then $\mu < \infty$ automatically. Thus, the second part of the theorem shows that every u.i.M. is in fact a Doob martingale.

Proof. **Proof of part 1**: Fix b > a,

$$U(a,b) = \lim_{n \to \infty} U_n(a,b).$$

By the upcrossing lemma, we have

$$\mathbb{E}U_n(a,b) \le \frac{\mathbb{E}(M_n - a)_{-}}{b - a} \le \sup_n \frac{\mathbb{E}|M_n| + |a|}{b - a} < \infty.$$

Therefore, by Monotone Convergence Theorem, we have

$$\mathbb{E}U(a,b) = \lim_{n \to \infty} \mathbb{E}U_n(a,b) \le \sup_n \frac{\mathbb{E}|M_n| + |a|}{b-a} < \infty.$$

This imples that,

$$\mathbb{P}(U(a,b) = \infty \text{ for any } b > a, a, b \in \mathbb{Q}) = 0.$$

So with probability 1 the trajectory M_n intersects any arbitrary small interval only finitely many times. Thus there must exist a (possibly extended real-valued) random variable M_∞ such that $M_n \xrightarrow{a.s.} M_\infty$.

To show that M_{∞} is in fact integrable (and hence real-valued) we use Fatou's lemma:

$$\mathbb{E}[|M_{\infty}|] = \mathbb{E}[\liminf_{n \to \infty} |M_n|] \le \liminf_{n \to \infty} \mathbb{E}[|M_n|] \le \mu < \infty$$

Proof of part 2: To show $M_t = \mathbb{E}[M_{\infty}|\mathcal{F}_t]$, it suffices to show that for any $B \in \mathcal{F}_t$, we have

$$\mathbb{E}M_{\infty}\mathbf{1}_B = \mathbb{E}M_t\mathbf{1}_B.$$

For any $m \ge t$, we have

$$\mathbb{E}M_m 1_B = \mathbb{E}[\mathbb{E}_t[M_m 1_B]] = \mathbb{E}[1_B M_t].$$

Since $M_m 1_B \xrightarrow{a.s.} M_\infty 1_B$ and $\{M_m 1_B\}$ is uniformly integrable, it follows that $M_m 1_B \xrightarrow{L_1} M_\infty 1_B$. Therefore,

$$\mathbb{E}[M_t 1_B] = \lim_{m \to \infty} \mathbb{E}[M_m 1_B] = \mathbb{E}[M_\infty 1_B].$$

Corollary 1. If $M_n \ge 0$, M_n is a martingale, then it converges almost surely to integrable M_{∞} .

Proof. Since for any n,

$$\mathbb{E}|M_n| = \mathbb{E}M_n = \mathbb{E}M_0,$$

it follows that

$$\sup_{n} \mathbb{E}|M_n| < \infty.$$

In particular, $M_n = X_1 \dots X_n$ such that $X_n \ge 0, \mathbb{E}X_n = 1$. Then, M_n converges almost surely.

4 Further topics

Martingale and stopping time theory is rich subject. The key omissions are:

- A lot of results about martingales are also available for submartingales (i.e. when $\mathbb{E}_{t-1}[M_t] \ge M_{t-1}$) and supermartingales (i.e. when $\mathbb{E}_{t-1}[M_t] \le M_{t-1}$).
- Maximal inequalities for martingales/submartingales/supermartingales). These establish results similar to Kolmogorov's maximal inequalities (for sums of independent r.v.s) but for general martingales. To get a flavor of such results, if $M_0 = 0$ then

$$\mathbb{P}[\max_{0 \le t \le n} M_t > b] = \mathbb{P}[U_n(0, b) \ge 1] \le \frac{1}{b} \mathbb{E}[|M_n|],$$

where in the last step we applied the upcrossing Lemma and Markov's inequality. So in particular, in the setting of convergence theorem we see that life-time maximum of M_t is of the order of μ . Other maximal inequalities bound *p*-th norm of the maximum in terms of the *p*-th norm of M_n etc.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.436J / 15.085J Fundamentals of Probability Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>