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Practical push-forward measure 

The push-forward measure is one of those things which sounds horrible and complex when done 
in the abstract, but is pretty simple, intuitive, and really useful when actually used on things. 

Problem 0.1 (Flipping coins with uniform r.v.). Suppose you want to flip a fair coin, 
but you don’t have a coin – you only have access to X ∼ unif[0, 1]. How would you do it? 
What if you wanted the coin to not be fair but instead have probability p to land heads? 

We can do this by using push-forward probability measures. The random variable we have 
operates on ([0, 1], B, λ) (so Ω1 = [0, 1]); the random variable we want operates on Ω2 = {H, T}. 

We now use a measurable function f : Ω1 → Ω2 which you probably already figured out: ( 
H if ω ≤ 1/2 

f(ω) = 
T otherwise 

That this is measurable is obvious. We then note that P[H] = λ(f−1(H)) = 1/2 and we’re done. 

To do this with a p probability of heads, just replace 1/2 with p in the above. 

Problem 0.2. What if you want X ∼ unif[0, 1], but you only have a fair coin? (You can 
flip it more than once and, as MIT students all do, you have infinite time). 

Now we have the probability space ({0, 1}∞ , F , P) of infinite coin-flips (we’re using 0 and 1 now 
because it’s easier to write the push-forward function) and we want to move it to [0, 1]. Note that 
an infinite bit-string looks suspiciously like a real number written in binary. Thus, the proper 
function f to push this forward into [0, 1] is 

∞X 
f(ω) = ωi2

−i 

i=1 

I’m not going to prove this works with all the rigorous bells and whistles, but the way to do it is 
to show that for any arbitrary interval I = [a, b], the probability of getting an X ∈ [a, b] is b − a 
(which then shows that the probability matches on every Borel-measurable subset) – and the 
way to do that is to first consider only a, b of the form m/2n (so that we can decide the inclusion 
with only n bits, except for silly edge cases involving having all 0’s after the nth bit) and then 
show that any [a, b] can be approximated in this way. 
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Some MCT Example Problems 

This is taken from last year’s Week 7 recitation. 

Problem 0.3. Let X1, X2, . . . , X, Y be random variables on the same probability space. 
Then, we want to know: 

• Suppose 0 ≥ Xn & X. Does it necessarily hold that E[Xn] → E[X]? 

• Suppose Y ≤ Xn % X, and E[|Y |] < ∞. Does it necessarily hold that E[Xn] → E[X]? 

• Suppose 0 ≤ Xn & X. Does it necessarily hold that E[Xn] → E[X]? 

• Suppose Xn is a continuous r.v. on R for all n, and has density function fXn ; and 
suppose that fXn → f (pointwise). Then, is it necessarily true that: Z Z 

1. Is fdλ ≤ 1? 2. Is fdλ = 1? 
R R 

(Note that the last one is a little unfair because we haven’t really discussed probability density 
functions yet - last year, pdf’s were introduced before abstract integration - but probably many 
people already have some familiarity with them. If not, don’t worry about that one.). 

Solution: Our main tools here are the MCT and linearity of expectations. 

• Yes it does. We note that 0 ≤ −Xn % −X. Then the MCT implies E[−Xn] → E[−X]; 
and by linearity of expectation we can pull out the “−” and conclude E[Xn] → E[X]. 

• Yes it does. We write Zn := Xn − Y and Z = X − Y . Then 0 ≤ Zn % Z; furthermore, 
because the integral of Y is absolutely convergent, E[Zn] and E[Z] remain well-defined 
(exercise for those who want: construct a counterexample when this condition is removed). 
Therefore, by the MCT, E[Zn] → E[Z]. 

• No it doesn’t. We can construct a counterexample: suppose we have the probability space � � � � 
1 1 [0, 1], B, λ (Lebesgue) and Xn = . Then note that Xn & 0 at all ω; but E[Xn] = ∞ n ω 

for all n (see note at bottom for why) but E[X] = 0. R 
• (1) Yes. Here we use Fatou’s Lemma. First, since fXn is a density function, R fXn dλ = 1. 

Second, by definition if limn→∞ fXn = f , then lim infn→∞ fXn = f . But then by Fatou, Z Z Z � � 
1 = lim inf fXn dλ ≥ lim inf fXn dλ = fdλ 

n→∞ n→∞ R R R 

(2) No. Consider Xn ∼ unif[n, n + 1] (so fXn Then fXn (x) → 0 at all x, so f R = 1[n,n+1]. 
is just 0. In which case, of course, R fdλ = 0 =6 1. 

R 1 Note: Why is t−1dt = ∞? The integral of t−1 is log(t); and log(t) is unbounded below as 0 
t → 0+ – so the definite integral ends up being log(1) − log(0) = ∞. 
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Fubini Failures: When does swapping order of summation change the result? 

Here’s an interesting thing to think about: suppose we have some ping-pong balls labeled 1, 2, . . . , 
and a (really big) bucket. We make the following procedure: at each iteration n, we put in balls 
10n − 9 through 10n (ten balls at a time, starting with 1 through 10) and then remove ball n. 
Taking this to the limit - infinite iterations - how many balls are left in the bucket? 

This is actually a well-known paradox. There are two perspectives: 

• Iterations view: At each iteration, we put in 10 balls and remove 1, so we added 9 balls in 
total. So the number of balls grows toward ∞ and we have ∞ balls at the end. 

• Balls view: Each ball m was put in at step dm/10e and then removed later at step m. So 
at the end, 0 balls can in the bucket. 

This cute little story shows how Fubini’s Theorem would break down if you failed to meet the 
absolute convergence condition. To make it more “mathematical”, we can explicitly construct a 
double-sum whose value changes when the order of summation changes. The above helps to see 
how to do this - we’ll make rows refer to iterations and columns to balls. The entry f(m, n) will 
refer to what happened to ball n at iteration m: 1 if it was put in, −1 if it was taken out, and 0 
(the vast majority of the time) when nothing happens. Formally, ⎧ ⎪1 if n = dm/10e ⎨ 

f(m, n) = −1 if n = m ⎪⎩ 
0 otherwise 

(technically there’s one exception case for ball 1 which is put in and taken out at the same 
iteration, so we just use f(1, 1) = 0 because that’s really what happened). 

So then, summing by rows: each row has ten 1’s in it and one −1 (except the first row which 
just has nine 1’s) and so each sums to 9; so summing over all of them gives XX 

f(m, n) = ∞ 
m n 

But summing by columns: each column has one 1 and one −1 (except the first row which is all 
0’s) and so each sums to 0; so summing over all of them gives XX 

f(m, n) = 0 
n m 

Hence the “paradox”. 

Why doesn’t Fubini prevent this from happening? Because f is not absolutely convergent, nor 
is it nonnegative – it contains infinite 1’s and infinite −1’s. 

Remark: A very similar example is in the lecture notes. 
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A weird integration counterexample R 
In general, Lebesgue integration is more general than Riemann integration – for example, 1Q(x)dx [0,1] 
is well-defined as a Lebesgue integral, but not as a Riemann integral. However, when dealing 
with improper Riemann integrals - which have an infinite domain or are unbounded around 
certain points - sometimes we get a function for which the Riemann integral converges but the 
Lebesgue integral is undefined. 

Note: For this class, it is not required for you to understand this section; but it is 
something I thought we should mention. 

sin(x) Problem 0.4. Let f(x) = (where f(0) = 1, which keeps it continuous). Consider: x Z ∞ Z t 
f(x)dx := lim f(x)dx 

t→∞ 0 0 R 
We want to show that this is Riemann-integrable but that the integral R+ 

f(x)dx is not 
Lebesgue-integrable. 

We’re not going to formally prove this, but we’ll give a sketch. We need the following: 

Fact 0.1 (Facts about the Harmonic Series). P n 1 1 • The Harmonic Series hn := = 1 + 1 + + . . . diverges, i.e. limn→∞ hn = ∞. i=1 i 2 3 P n (−1)n−1 1 • The Alternating Harmonic Series an := = 1 − 1 + − . . . converges to i=1 n 2 3 
a finite result (which happens to be log(2) but honestly it doesn’t matter for this). 

Note the the first fact means that the Alternating Harmonic Series is not absolutely convergent. 

sin(x) Note that f(x) = oscillates about 0, crossing at kπ for all k > 0. Let sk be the area x 
between f(x) and 0 over the interval [(k − 1)π, kπ]. Note that sin(x)/x ≤ 1 and so s1 ≤ π. 

As k → ∞, these oscillations get closer and closer to being scaled-down versions of sin(x); and 
therefore there is a constant c such that sk ≈ c/k for large values of k (there is a rigorous def’n 
of this but we’re not going to worry about it, this is for intuition only). 

Then, because the Riemann integral is a limit as t →∞, it is explicitly being summed in order: 
s1 − s2 + s3 − . . . which converges to a finite value; on the other hand, the Lebesgue integral 
splits o˙ the prositive from the negative parts and therefore has the order 

(s1 + s3 + s5 + . . . ) − (s2 + s4 + s6 + . . . ) = ∞−∞, which results in an undefined integral 

(note that the two sums are both more than half the Harmonic Series and therefore diverge). 
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EXTRA: The probabilistic method for max-cuts 

The basic idea of the probabilistic method is as follows: Suppose we want to show that some 
structure exists, or that some structure of a particular size exists – say, an independent set of 
size k in some graph. But building the thing and showing the build works is hard. So instead 
we build it randomly and show that the expected size is ≥ k; then there must be some outcome 
which actually achieves that size (or greater), thus showing existence. 

Remark: Note that this doesn’t show, at all, how to build it. However, there is a way to 
(sometimes) convert this kind of proof into a (deterministic) algorithm for actually constructing 
whatever it is. This is called the method of conditional expectations, and interested students are 
encouraged to look it up. I promise it’s really cool. 

Problem 0.5. Let G = (V, E) be an undirected graph where E 6= ∅ (at least one edge exists). 
Show that V can be partitioned into (S, V − S) in such a way so that strictly more than half 
the edges are between S and V − S (as opposed to being internal in S or internal in V − S). 

Solution: As with all probabilistic method proofs, we put vertices into S at random – specifically, 
v ∈ S with probability 1/2, independent of all other vertices. Then every edge (u, v) has a 1/2 
probability of being across S to V − S, because whichever set u ends up in, v has a 1/2 chance of 
being in the other one. Denote the set of edges crossing S, V − S to be E(S, V − S), and denote 
S∗ to be the subset maximizing |E(S∗, V − S∗)| � � 

Therefore, if |E| = m > 0, then E |E(S, V − S)| = m/2, and so � � 
E(S ∗ , V − S ∗ ) ≥ E |E(S, V − S)| = m/2 

But this isn’t exactly what we wanted - we wanted a strict inequality. Luckily, we have the 
following fact (easy to verify): 

Fact 0.2. If X is a random variable, then maxω X(ω) = E[X] only if X = E[X] almost 
everywhere. Furthermore, if we’re in a discrete probability space (like the graph-cutting 
example here) and every ω has a positive probability, then 

max X(ω) = E[X] only if X is constant. 
ω 

Specifically, if we find some ω for which X(ω) < E[X] then we’ve shown that maxω X(ω) > E[X]. 
Here we use the event that S = ∅, for which 

|E(∅, V )| = 0 < m/2 = E[|E(S, V − S)|] 

This completes the proof. 

Exercise in precision: If we remove the assumption that E 6= ∅, is the theorem still true? 
What part of the proof breaks down? 
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