
Massachusetts Institute of Technology
 
Department of Electrical Engineering and Computer Science
 

6.438 Algorithms for Inference 
Fall 2014 

23 Learning Structure in Directed Graphs 

Last time, we looked at parameter estimation for a directed graphical model given 
its graphical model structure. Today, we’ll instead focus on learning graphical model 
structure for DAG’s. As with the previous lecture, we provide both frequentist and 
Bayesian perspectives. 

We’ll stick to a setup where we have N random variables x1, x2, . . . , xN that are 
nodes in a graphical model, where each xi has alphabet size M . The number of 

N
o 

possible edges is thus
2 = N(N − 1)/2, and since an edge is either present or not in 

a graph, there are 2N(N−1)/2 possible graphs over the N nodes. Viewing each graph 
as a different model, we treat learning graphical model structure as a model selection 
problem. Of course, we’d be on a road to nowhere without any data, so we’ll assume 
that we have at our disposal K i.i.d. observations of x = (x1, . . . , xN ). In particular, 
each observation has N values and no random variable is hidden. The two main 
questions that arise are: 

• How do we score any particular model (i.e., graph) given data? 

• How do we find a model with the highest score? 

We present the frequentist perspective first before looking at the Bayesian perspective. 

23.1 Frequentist Perspective: Likelihood Score 

As a reminder, the frequentist perspective has the fundamental interpretation that the 
parameters of interest, which in our case are parameters θG of the graphical model G, 
are deterministic but unknown. With this interpretation, it does not make sense to 
talk about parameter θG having a distribution, since it’s deterministic! 

Moving right along, note that for a fixed model (i.e., graph), evaluating the log 
likelihood for the model at the ML estimate for the model gives what we’ll refer to as 
the likelihood score, which we could use to score a graph! In particular, it seems that 
the likelihood score should be higher for more plausible graphs. Let’s formalize this 
idea. Recycling notation from the previous lecture, denote £((G, θG); D) to be the log 
likelihood of graphical model (G, θG) evaluated on our observations D. Then, a best 
graph is one that is a solution to the following optimization problem: 

ˆmax £((G, θG); D) = max max £((G, θG); D) = max £(G; D), 
G, θG G θG G "  " " 

involves ML estimation 
given graph structure G 

θ̂MLwhere £̂(G; D) ; £((G, G ); D) is the likelihood score. 



We’ll now look at what maximizing the likelihood score means for DAG’s, for
 
which we will relate the likelihood score to mutual information and entropy. First, 
we recall some definitions before forging on. The mutual information of two random 
variables u and v is given by  pu,v (u, v)

I(u; v) ; pu,v (u, v) log , 
pu(u)pv (v)u,v 

which is symmetric (i.e., I(u; v) = I(v ; u)) and non-negative. The entropy of random 
variable u is given by  

H(u) ; − pu(u) log pu(u) ≥ 0. 
u 

We’ll use the following formula:  
H(u|v) = − pu,v (u, v) log pu|v (u|v) 

u,v  pu,v (u, v) 
= − pu,v (u, v) log 

pv (v)u,v  pu(u)pu,v (u, v) 
= − pu,v (u, v) log 

pu(u)pv (v)u,v    pu,v (u, v) 
= − pu,v (u, v) log + log pu(u)

pu(u)pv (v)u,v   pu,v (u, v) 
= − pu,v (u, v) log − pu,v (u, v) log pu(u) 

pu(u)pv (v)u,v u,v   pu,v (u, v) 
= − pu,v (u, v) log − pu(u) log pu(u) 

pu(u)pv (v)u,v u 

= −I(u; v) + H(u). (1) 

Finally, whenever we are looking at mutual information or entropy that comes from 
ˆ ˆempirical distributions, we’ll put on hats: I and H. 

For a DAG G with parameters θG, we have 

NN 
px1,...,xN (x1, . . . , xN ; θG) = pxi|xπi 

(xi|xπi ; θ
i ),G

i=1 

where πi denotes the set of parents of node i and θG 
i denote parameters (i.e., table 

entries) of conditional probability table pxi|xπi 
; note that which nodes are parents of 

node i depends on the graph G. We can more explicitly write out how conditional 
probability table pxi|xπi 

relates to its parameters θi :G

pxi|xπi 
(xi|xπi ; θG

i ) = [θG
i ]xi,xπi 

. 
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Assuming that parameters from different tables are independent, then we can build
 
the likelihood score from likelihood scores of individual conditional probability tables:
 

N 

ˆ ˆ£(G; D) = £i(G; Di) (2) 
i=1 

where Di here refers to the data corresponding to random variables {xi, xπi }. Recall 
that the ML estimate θ̂G 

i for the θG 
i is the empirical distribution: 

p̂xi,xπi 
(xi, xπi )

θi[ˆ ]xi,xπi 
= p̂xi|xπi 

(xi|xπi ) = .G p̂xπi 
(xπi ) 

Furthermore, 

£̂i(G; Di) = p̂xi,xπi 
(a, b) log p̂xi|xπi 

(a|b) = −Ĥ(xi|xπi ) = Î(xi; xπi ) − Ĥ(xi), (3) 
a,b 

where the last step uses equation (1). Putting together (2) and (3), we arrive at 

N N   N N 

£̂(G; D) = £̂i(G; Di) = Î(xi; xπi ) − Ĥ(xi) = Î(xi; xπi ) − Ĥ(xi) . 
i=1 i=1 i=1 i=1"  " " 

independent of G 

The main message here is that given a topological ordering (i.e., a node ordering where 
parents occur before children in the ordering), we can evaluate the likelihood score 
by summing up empirical mutual information terms while subtracting off the node 
entropies. Note that all graphs will have the same node entropies getting subtracted 
off! Hence, for comparing graphs, we only need to compare the sum of empirical 
mutual information terms per graph. 

Example 1. (Chow-Liu 1968) Suppose we restrict ourselves to optimizing over trees 
across all N nodes. In this scenario, all models are equally complex in the sense that 
they each have N − 1 edges. Our earlier analysis suggests that all we need to do 
to find a tree with the highest likelihood score is to find one where the sum of the 
empirical mutual information terms is largest. This is just a maximum spanning tree 
problem! 

In particular, we can just compute the empirical mutual information between 
every pair of nodes and then run Kruskal’s algorithm: We sort the empirical mutual 
information values across all pairs. Then, starting from an empty (no edges) graph 
on the N nodes, we iterate through the edges from largest mutual information value 
to smallest, adding an edge if it does not introduce a cycle. We repeat this until we 
have N − 1 edges. 

Care must be taken for assigning edge orientations to get a directed tree, since 
we do not want any node having more than one parent, which would have required 
looking at an empirical mutual information that involves more than two nodes. 
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Example 2. Our second example will reveal a critical pitfall of using the likelihood 
score to evaluate the quality of a model. In particular, what we’ll see is that the 
likelihood score favors more complicated models! 

Suppose we’re choosing between graphs G0 and G1 shown below. 

G0 : 
x y 

£̂(G0; D) = −Ĥ(x) − Ĥ(y) 

G1 : 
x y 

£̂(G1; D) = Î(x ; y) − Ĥ(x) − Ĥ(y) 

Note that we have 
£̂(G1; D) − £̂(G0; D) = Î(x ; y) ≥ 0, 

which means that the more complicated model G1 will always be at least as good 
as G0. Thus, it is safe to always prefer G1. This phenomenon extends to larger models 
as well, where the likelihood score will favor more complex models. We’ll address this 
by placing priors on parameters, bringing us into Bayesian statistics. 

23.2 Bayesian Perspective: Bayesian Score 

Unlike frequentists, Bayesians say that since we don’t know parameters θG of graph G, 
then we might as well treat these parameters as random. In particular, we place a 
prior distribution p(G) on graph G and a prior p(θG|G) on parameters θG given graph G. 
Then the quality of a graph can be quantified by its posterior distribution evaluated 
on our data D. Applying Bayes’ rule, the posterior is given by 

p(D|G)p(G) 
p(G|D) = . 

p(D) 

Since data D is observed and fixed, maximizing the above across all graphs is the 
same as just maximizing the numerator; in particular, we’ll maximize the log of the 
numerator, which we’ll call the Bayesian score £B: 

£B(G; D) = log p(D|G) + log p(G), (4) 

where  
p(D|G) = p(D|G, θG)p(θG|G)dθG (5) 

is called the marginal likelihood. Note, importantly, that we marginalize out random 
parameters θG. 

It is possible to approximate the marginal likelihood using a Laplace approxi
mation, which is beyond the scope of this course and involves approximating the 
integrand of (5) as a Gaussian. The end result is that we have 

θML θML p(D|G) ≈ p(D|ˆ , G) p(ˆ |G)σθ|D,G G"  " " 
Occam factor 
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where σθ|D is a width associated with the Gaussian and the Occam factor turns out 
to favor simpler models, alluding to Occam’s razor. 

23.2.1 Marginal Likelihoods with Unknown Distributions 

We’ll now study a graph with a single node, which may not seem particularly exciting, 
but in fact looking at the marginal likelihood for this single-node graph and comparing 
it with the likelihood score in an asymptotic regime will give us a good sense of how 
the Bayesian score differs from the likelihood score. 

Suppose random variable x takes on values in {1, 2, . . . ,M}. Then x is a single-
trial multinomial random variable (this single-trial case is also called a categorical 
random variable) with parameters θ = (θ1, . . . , θM ). We choose prior pθ(θ; α) to be 
the conjugate prior, i.e. θ is Dirichlet with parameters α = (α1, . . . , αM ). Then if we 
have K i.i.d. observations x1, . . . , xK of x , where we let K(m) denote the number of 
times alphabet symbol m occurs, then 

p(D; α) = px1,...,xK (x1, . . . , xK ) 
KN 

= pθ(θ; α) pxk|θ(xk|θ)dθ 
k=1 

K MN N 
θ1{xk =m}= pθ(θ; α) m dθ 

k=1 m=1 

M KN N 
θ1{xk =m}= pθ(θ; α) m dθ 

m=1 k=1m  
MN 

θK(m)= pθ(θ; α) m dθ m m=1  m   M M MN NΓ( i=1 αi) 
θαi−1 θK(m)= dθrM i m

i=1 Γ(αi) m=1i=1  M MNΓ( αi)i=1 θαm+K(m)−1 = dθ, (6)rM m 
Γ(αi)i=1 m=1  ∞ 

tz−1where Γ(z) =
0 e−tdt is the gamma function. Note that Γ(n) = (n − 1)! for 

positive integer n, so it is a continuous extension of the factorial function. Next, 
observe that the integral in (6) just evaluates to be the partition function of a Dirichlet 
distribution with parameters (α1 + K(1), α2 + K(2), . . . , αM + K(M)). Hence, 

M rM rMN Γ(αi + K(i)) Γ(αi + K(i))
θαm+K(m)−1 i=1 i=1 
m dθ =  M =  M . (7) 

Γ( (αi + K(i)) Γ( αi + K)m=1 i=1 i=1 
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Stitching together (6) and (7), we get
 

M rM M MNΓ( Γ(αi + K(i)) Γ( Γ(αi + K(i))i=1 αi) i=1 i=1 αi) 
p(D; α) = = . (8)rM M MΓ(αi) Γ( αi + K) Γ( αi + K) Γ(αi)i=1 i=1 i=1 i=1 

We’ll now see what happens with asymptotics. For simplicity, we shall assume M = 2 
and α1 = α2 = 1. Effectively this means that x is Bernoulli except that we’ll let it 
take on values in {1, 2} instead of {0, 1}. Then using equation (8), 

Γ(α1 + α2) Γ(α1 + K(1)) Γ(α2 + K(2)) 
p(D; α) = 

Γ(α + α2 + K) Γ(α1) Γ(α2) 
Γ(2) Γ(1 + K(1)) Γ(1 + K(2)) 

= 
Γ(2 + K) Γ(1) Γ(1) 
K(1)!K(2)! 

= 
(K + 1)! 

K(1)!K(2)! 
= 

(K + 1)K! 
−1

1 K! 
= 

K + 1 K(1)!K(2)!  −1
1 K 

= . (9)
K + 1 K(1)

We shall use Stirling’s approximation of the binomial coefficient:   
n nnH(Ber(m/n))≈ e , (10) 
m 2πm(n − m)

where H(Ber(m/n)) denotes the entropy of a Bernoulli random variable with param
eter m/n. Combining (9) and (10) results in   −1

1 K 
p(D; α) = 

K + 1 K(1)  .−1 
1 KKH(Ber(K(1)/K))≈ e 

K + 1 2πK(1)K(2)  
1 2πK(1)K(2)−KH(Ber(K(1)/K))= e 

K + 1 K 
1 2πK(1)K(2)−KĤ(x)= e . 

K + 1 K 

Taking the log of both sides yields the approximate Bayesian score where we note 
that there is no p(G) term since there’s only one graph possible: 

£B(D) = log p(D; α) ≈ −KĤ(x) − log(K + 1) + 
1 
log(2πK(1)K(2)) − 

1 
log K. (11)

2 2 
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??? 
In contrast, the likelihood score is: 

ˆ θML)£(D) = log p(D; ˆ

= log{(θ̂ML)K(1)(θ̂ML)K(2)} 1 2  
K(1) K(2)

K(1) K(2)
= log

K K 

K(1) K(2) 
= K(1) log + K(2) log 

K K 
K(1) K(1) K(2) K(2) 

= K log + log
K K K K 

= −KĤ(x). (12) 

Comparing (11) and (12), we see that the Bayesian score incurs an extra −O(log K) 
factor, which essentially penalizes a model when there is insufficient data. In fact, a 
more general result holds, which we’ll mention at the end of lecture that shows that 
the Bayesian score will asymptotically penalize model complexity when we have a 
large number of samples K. 

23.2.2 Marginal Likelihoods with DAG’s 

Let’s return to Example 2 considered in the likelihood score setup and see how the 
Bayesian score differs. Assuming that p(G0) = p(G1), then comparing the Bayesian 
score (4) just involves comparing the marginal likelihoods p(D|G). Note that G0 

has parameters θx , θy ∈ [0, 1]M , whereas G1 has parameters θx ∈ [0, 1]M and θy = 
(θy |1, θy |2, . . . , θy |M ) with each θy |m ∈ [0, 1]M . Of course, each length-M parameter 
vector describing a distribution must sum to 1. 

The marginal likelihood for G0 is given by 

p(D|G0) = p(θx , θy |G0)p(D|θx , θy , G0)dθx dθy 

K KN N 
= p(θx |G0)p(θy |G0) p(xk|θx , G0) p(yk|θy , G0)dθx dθy 

k=1 k=1 NK KN 
= p(θx |G0) p(xk|θx , G0)dθx p(θy |G0) p(yk|θy , G0)dθy . 

k=1 k=1 
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Meanwhile, the marginal likelihood for G1 is given by 

p(D|G1) 

= p(θx , θy |G1)p(D|θx , θy , G1)dθx dθy m NM KN   
= p(θx |G1) p(θy |m|G1) p(xk|θx , G1)p(yk|xk, θy |xk , G1) dθx dθy 

m=1 k=1m m 
K M KN N N 

= p(θx |G1) p(xk|θx , G1) p(θy |m|G1) p(yk|xk, θy |xk , G1)dθx dθy 

k=1 m=1 k=1 m m 
K MN N 

= p(θx |G1) p(xk|θx , G1) p(θy |m|G1)
 
k=1 m=1
 

M K
N N 
× p(yk|xk, θy |xk , G1)

1{xk =m}dθx dθy 

m=1 k=1 m 
KN 

= p(θx |G1) p(xk|θx , G1) dθx 

k=1
 

M K
N N 
× p(θy |m|G1) p(yk|xk, θy |xk , G1)

1{xk =m}dθy |m. 
m=1 k=1 

If we choose hyperparameters (which are the Dirichlet parameters α) of θx to be the 
same across the two models G0 and G1, then the first factors involving an integral 
over θx in marginal likelihoods p(D|G0) and p(D|G1) are the same, so we just need 
to compare the second factors; whichever is larger dictates the model favored by the 
Bayesian score: 

K M KN ? N N 
p(θy |G0) p(yk|θy , G0)dθy � p(θy |m|G1) p(yk|xk, θy |xk , G1)

1{xk =m}dθy |m. 
k=1 m=1 k=1 

What will happen is that when we have only a little data, we will tend to prefer G0, 
and when we have more data, we will prefer G1 provided that x and y actually are 
correlated. The transition point at which we switch between favoring G0 and G1 

depends on the strength of the correlation between x and y . 

23.2.3 Approximations for large K 

For large K, there is a general result that the Bayesian score satisfies 

log Kˆ£B(G; D) ≈ £(G; D) − dim G +O(1),
2"  " " 

Bayesian Information Criterion (BIC) 
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where dim G is the number of independent parameters in model G and the trailing O(1) 
constant does not depend on K. Note that £̂(G; D) is the likelihood score and scales 
linearly with K (a specific example that showed this is in equation (12)). Importantly, 
the second term, which comes from the Occam factor, penalizes complex models. 
However, as the number of observations K → ∞, since the likelihood score grows 
linearly in K, it will dominate the second term, pushing us toward the frequentist 
solution and finding the correct model provided that the correct model has nonzero 
probability under our prior p(G). 
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