
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.438 Algorithms For Inference
Fall 2014

9	 Forward-backward algorithm, sum-product on
factor graphs

The previous lecture introduced belief propagation (sum-product), an efficient infer
ence algorithm for tree structured graphical models. In this lecture, we specialize it
further to the so-called hidden Markov model (HMM), a model which is very useful
in practice for problems with temporal structure.

9.1 Example: convolution codes

We motivate our discussion of HMMs with a kind of code for communication called a
convolution code. In general, the problem of communication is that the sender would
like to send a message m, represented as a bit string, to a receiver. The message may
be corrupted along the way, so we need to introduce redundancy into the message so
that it can be reconstructed accurately even in the presence of noise. To do this, the
sender sends a coded message b over a noisy channel. The channel introduces some
noise (e.g. by flipping random bits). The receiver receives the “received message” y
and then applies a decoding procedure to get the decoded message m̂. A schematic
is shown in Figure 1. Clearly, we desire a coding scheme where m̂ = m with high
probability, b is not much larger than m, and m̂ can be efficiently computed from y .

We now discuss one example of a coding scheme, called a convolution code. Sup
pose the message m consists of N bits. The coded message b will consist of 2N − 1
bits, alternating between the following:

•	 The odd-numbered bits b2i−1 repeat the message bits mi exactly.

•	 The even-numbered bits b2i are the XOR of message bits mi and mi+1, denoted
mi ⊕ mi+1.

The ratio of the lengths of m and b is called the rate of the code, so this convolution
code is a rate 1

2 code, i.e. for every coded message bit, it can convey 1
2 message bit.

We assume an error model called a binary symmetric channel : each of the bits of
the coded message is independently flipped with probability ε. We can represent this
as a directed graphical model as shown in Figure 2. Note that from the receiver’s
perspective, only the yi’s are observed, and the task is to infer the mi’s.

In order to perform inference, we must convert this graph into an undirected
graphical model. Unfortunately, the straightforward construction, where we moralize
the graph, does not result in a tree structure, because of the cliques over mi, mi+1, and
b2i. Instead, we coarsen the representation by combining nodes into “supernodes.” In
particular, we will combine all of the adjacent message bits into variables mimi+1, and

1

m1, . . . ,mN b1, . . . , b2N�1 m̂1, . . . , m̂N

message coded message

� y1, . . . , y2N�1

corruption (binary
symmetric channel)

received message decoded message

error

Figure 1: A schematic representation of the problem setup for convolution codes.

m1 m2

b1 b2 b3 b4 b5

m3

y1 y2 y3 y4 y5

� �

…

Figure 2: Our convolution code can be represented as a directed graphical model.

we will combine pairs of adjacent received message bits y2i−1y2i, as shown in Figure
3. This results in a tree-structured directed graph, and therefore an undirected tree
graph — now we can perform sum-product.

9.2 Hidden Markov models

Observe that the graph in Figure 3 is Markov in its hidden states. More generally, a
hidden Markov model (HMM) is a graphical model with the structure shown in Figure
4. Intuitively, the variables xi represent a state which evolves over time and which
we don’t get to observe, so we refer to them as the hidden state. The variables yi are
signals which depend on the state at the same time step, and in most applications
are observed, so we refer to them as observations.

From the definition of directed graphical models, we see that the HMM represents
the factorization property

N NN N
P(x1, . . . , xN , y1, . . . , yN) = P(x1) P(xi|xi−1) P(yj |xj). (1)

i=2 j=1

Observe that we can convert this to the undirected representation shown in Figure 4
(b) by taking each of the terms in this product to be a potential. This allows us to

2

(a)

m1m2 m2m3 m3m4

y1y2 y3y4 y5y6

mN�1mN

y2N�3y2N�2

mN

y2N�1

...

(b)

m1m2 m2m3 m3m4

y1y2 y3y4 y5y6

mN�1mN

y2N�3y2N�2

mN

y2N�1

...

Figure 3: (a) The directed graph from figure 2 can be converted to a tree-structured
graph with combined variables. (b) The equivalent undirected graph.

(a)

x1 x2 x3 xN...

y1 y2 y3 yN

Hidden state

Observations

(b)

x1 x2 x3 xN...

y1 y2 y3 yN

Figure 4: (a) a hidden Markov model, and (b) its undirected equivalent.

3

x1 x2 x3 xN...

�1(x1) �N (x1)

�12(x1, x2)

Figure 5: Representation of an HMM as a chain graph.

perform inference using sum product on trees. In particular, our goal is typically to
infer the marginal distribution for each of the hidden states given all of the observa
tions. By plugging in the values of the observations, we can convert the HMM to a
chain graph, as shown in Figure 5. This graphical model has two sets of potentials:

φ1(x1) = P(x1, y1) (2a)

φi(xi) = P(yi|xi), ∀i ∈ {2, . . . , N} (2b)

ψi,i+1(xi, xi+1) = P(xi+1|xi), ∀i ∈ {1, . . . , N − 1} (2c)

The resulting sum-product messages are:
m1→2(x2) = φ1(x1)ψ12(x1, x2) (3)

x1
mi→i+1(xi+1) = φi(xi)ψi,i+1(xi, xi+1)mi−1→i(xi) 2 ≤ i ≤ N (4)

xi
mN→N−1(xN−1) = φN (xN)ψN−1,N (xN −1, xN) (5)

xN
mi→i−1(xi−1) = φi(xi)ψi−1,i(xi−1, xi)mi+1→i(xi) 1 ≤ i ≤ N − 1 (6)

xi

Belief propagation on HMMs is also known as the forward-backward algorithm.
You can easily show that
m1→2(x2) = φ1(x1)ψ12(x1, x2) = P(x1, y1)P(x2|x1)

x1 x1
= P(x1, y1, x2) = P(y1, x2).

x1
m2→3(x3) = φ2(x2)ψ23(x2, x3)m1→2(x2) = P(y2|x2)P(x3|x2)P(y1, x2)

x2 x2
= P(x3, x2, y2, y1) = P(y1, y2, x3).

x2

4

Continuing in this fashion, we can show that:

mi−1→i(xi) = P(y1, y2, . . . , yi−1, xi).

Similarly:

mN→N−1(xN−1) = φN (xN)ψN−1,N (xN−1, xN) = P(yN |xN)P(xN |xN−1)
xN xN

= P(xN , yN |xN−1) = P(yN |xN−1).
xN

mN−1→N−2(xN−2) = φN−1(xN−1)ψN−2,N−1(xN−2, xN−1)
xN−1

= P(yN−1|xN−1)P(xN−1|xN−2)P(yN |xN−1)
xN−1

= P(yN−1, yN , xN−1|xN−2) = P(yN−1, yN |xN−2).
xN−1

Continuing in this fashion, we get:

mi+1→i(xi) = P(yi+1, yi+2, . . . , yN |xi).

9.2.1	 α, β Forward-Backward Algorithms and Probabilistic interpretation
of messages

As we have seen, belief propagation on HMMs takes the form of a two-pass algorithm,
consisting of a forward pass, and a backward pass. In fact there is considerably
flexibility on how computation is structured in the algorithm, even with the two-pass
structure. As a result, we refer to this algorithm and its variants collectively as the
forward-backward algorithm.

To illustrate how the computation can be rearranged in useful ways, in this section
we highlight one variant of the forward-backward algorithm, termed the α, β version
for reasons that will become apparent. The α, β forward-backward algorithm was
also among the earliest versions developed.

To see the rearrangement of interest, first note that each posterior marginal of
interest pxi|y1,...,yN is proportional to pxi,y1,...,yN and that from the graphical model in
Figure 4, (y1, . . . , yi) are d-separated from (yi+1, . . . , yN) given xi. Therefore, the joint
distribution factorizes as:

py1,...,yN ,xi = py1,...,yi,xi pyi+1,...,yN |xi,y1,...,yi	 (7)

= py1,...,yi,xi pyi+1,...,yN |xi .	 (8)

5

∑ ∑
∑
∑
∑
∑

Now we derive recursive update rules for computing each of the two parts. First, the

forward messages α:

αi(xi) = P(y1, . . . , yi, xi) (9)

= P(y1, . . . , yi, xi, xi−1) (10)
xi−1

= P(y1, . . . , yi−1, xi−1)P(xi|xi−1)P(yi|xi) (11)
xi−1

= αi−1(xi−1)P(xi|xi−1)P(yi|xi), ∀i ∈ {2, . . . , N}, (12)
xi−1

where α1(x1) = P(x1, y1).
Then, the backward messages β:

βi(xi) = P(yi+1, . . . , yN |xi) (13)

= P(xi+1, yi+1, . . . , yN |xi) (14)
xi+1

= P(yi+1|xi+1)P(xi+1|xi)P(yi+2, . . . , yN |xi+1) (15)
xi+1

= P(yi+1|xi+1)P(xi+1|xi)βi+1(xi+1), ∀i ∈ {1, . . . , N − 1}, (16)
xi+1

where βN (xN) = 1.

Now consider the relationship between α and β and our sum-product messages. The

forward message corresponds to part of the formula for α,

mi→i+1(xi+1) = P(y1, . . . , yi, xi+1) = P(y1, . . . , yi, xi, xi+1)
xi

= P(xi+1|xi)P(y1, . . . , yi, xi) = P(xi+1|xi)αi(xi). (17)
xi xi

Observe that the α messages and the forward messages in belief propagation perform
exactly the same series of sums and products, but they divide up the steps differently.
Following an analogous line of reasoning, we find that the backwards messages are
identical, i.e. βi(xi) = mi+1→i(xi). This gives a useful probabilistic interpretation to
the sum-product messages.

We can see directly that the marginal computation corresponding to

γi(xi) / pxi (xi|y1, . . . , yN) ∝ pxi (xi, y1, . . . , yN) = φi(xi)mi−1→i(xi)mi+1→i(xi)

in the sum-product algorithm is, in terms of the and α, β messages,

αi(xi)βi(xi)
γi(xi) = .

P(y1, . . . , yN)

6

∑
∑
∑

∑
∑
∑

∑
∑ ∑

 � �

x1
fa

fb

x2 x3 fc

Figure 6: An example of factor graph belief propagation.

In turn, we note that the likelihood P(y1, . . . , yN) is obtained from the messages
at any node:

P(y1, . . . , yN) = αi(xi)βi(xi), ∀i.
xi

One appealing feature of this form of the forward-backward algorithm is that the α
messages are, themselves, marginals that are often directly useful in applications.

In particular,
αi(xi) ∝ P(xi|y1, . . . , yi),

i.e., αi(xi) represents the marginal at state node i using data up to observation node
i, and as such represents a “causal” marginal of particular interest in real-time appli
cations. Sometimes these are referred to as “filtered” marginals, for reasons that we
will come back to when we revisit the forward-backward algorithm in the context of
Gaussian HMMs.

Finally, it should be noted that several other closely related variants of the forward-
backward algorithm are also possible. One is the so-called α, γ version, whereby the
recursion for β is replaced with a recursion for γ, which has the benefit of producing
the desired marginals directly as messages, and the additional benefit that each piece
of data yi is used only once, in the forward pass. Specifically, the recursion for the γ
messages can be shown to be (see, e.g., Jordan’s notes, Chapter 12):

P(xi+1|xi)αi(xi)
γi(xi) = �

� P(xi+1|x� i)αi(x� i)
γi+1(xi+1).

xxi+1 i

9.3 Sum-product on factor graphs

We now consider how to perform the sum product algorithm on a slightly more
general class of graphical models, tree-structured factor graphs. Observe that this is
a strictly larger set of graphs than undirected or directed trees. In either of these
two cases, there is one factor for each edge in the original graph, so their equivalent
factor graph representation is still a tree. However, some non-tree-structured directed
or undirected graphs may have tree structured factor graph representations. One

7

∑

∑

important example is polytrees : recall that these are directed graphs which are tree-
structured when we ignore the directions of the edges. For instance, observe that
the convolution code directed graph shown in Figure 2 is a polytree, even though its
undirected representation (obtained by moralizing) is not a tree. Using factor graph
belief propagation, it is possible to perform inference in this graph without resorting
to the supernode representation of Section 9.1.

In factor graph belief propagation, messages are sent between variable nodes and
factor nodes. As in undirected belief propagation, each node sends messages to one
neighbor by multiplying and/or summing messages from its other neighbors. Factor
nodes a multiply incoming messages by their factor and sum out all but the relevant
variable i: N

ma→i(xi) = fa(xi, xN(a)\{i}) mj→a(xj) (18)
xN(a)\{i} j∈N(a)\{i}

The variable nodes simply multiply together their incoming messages: N
mi→a(xi) = mb→i(xi) (19)

b∈N(i)\{a}

For instance, consider Figure 6. The messages required to compute px1 (x1) are:

ma→1(x1) = fa(x1) (20)

m2→b(x2) = 1 (21)

mc→3(x3) = fc(x3) (22)

m3→b(x3) = mc→3(x3) (23)

mb→1(x1) = fb(x1, x2, x3)m2→b(x2)m3→bm(x3) (24)
x2,x3

8

∑

∑

MIT OpenCourseWare
http://ocw.mit.edu

6.438 Algorithms for Inference
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

